Skip to main content

Advertisement

Log in

Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A polypyrrole (PPy)/multi-walled carbon nanotube (MWCNT)/cotton flexible electrode for high-performance supercapacitors was fabricated by a facile two-step method, including MWCNT-coated cotton prepared by a facile “dip and dry” method and then subjected to the electro-deposition of PPy by a potentiostatic deposition technique. The effects of deposition potential, time, and molar ratio of p-toluenesulfonic acid to pyrrole (Py) on the properties of textile electrodes were studied. The sheet resistances and surface morphologies of the as-prepared composite fabrics obtained under different conditions were investigated by means of a four-point probe method and field-emission scanning electron microscope and the electrochemical performances of the PPy/MWCNT/cotton electrodes were evaluated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements. These composite fabrics exhibited outstanding flexibility, high conductivity, with sheet resistance of 6.0 ± 0.4 Ω sq−1, a cauliflower structure with small holes on the surface favoring the contact between the electrode active material, a specific capacitance of 535 F g−1 (maintaining 97.8 % after 100 cycles), and a fitting value of charge-transfer resistance of 13.9 Ω cm−2, which offers great promise in wearable energy storage device applications because of their low-cost and high-performance features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker CK, Reynolds JR (1988) A quartz microbalance study of the electrosynthesis of polypyrrole. J Electroanal Chem Inter Electrochem 251:307–322

    Article  CAS  Google Scholar 

  • Carrillo I, de la Blanca ES, Redondo MI, García MV, González-Tejera MJ, Fierro JLG, Enciso E (2012) Influence of dopant anions on properties of polypyrrole nanocoated poly(styrene-co-methacrylic acid) particles. Synth Met 162:136–142

    Article  CAS  Google Scholar 

  • Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    Article  CAS  Google Scholar 

  • Gelin K, Mihranyan A, Razaq A, Nyholm L, Strømme M (2009) Potential controlled anion absorption in a novel high surface area composite of Cladophora cellulose and polypyrrole. Electrochim Acta 54:3394–3401

    Article  CAS  Google Scholar 

  • Groult H, Nakajima T, Kumagai N, Devilliers D (1996) Characterization and electrochemical properties of Cx(VOF3)F as positive material for primary lithium batteries. J Power Sources 62:107–112

    Article  CAS  Google Scholar 

  • Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13870–13873

    Article  CAS  Google Scholar 

  • Hu L, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435

    Article  Google Scholar 

  • Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089–2092

    Article  CAS  Google Scholar 

  • Jin C, Yang F (2006) Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions. Sens Actuators B Chem 114:737–739

    Article  CAS  Google Scholar 

  • Kaplin DA, Qutubuddin S (1995) Electrochemically synthesized polypyrrole films: effects of polymerization potential and electrolyte type. Polymer 36:1275–1286

    Article  CAS  Google Scholar 

  • Karaca E, Pekmez NÖ, Pekmez K (2014) Galvanostatic deposition of polypyrrole in the presence of tartaric acid for electrochemical supercapacitor. Electrochim Acta 147:545–556

    Article  CAS  Google Scholar 

  • Kim JY, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402

    Article  CAS  Google Scholar 

  • Li S, Qiu Y, Guo X (2009) Influence of doping anions on the ion exchange behavior of polypyrrole. J Appl Polym Sci 114:2307–2314

    Article  CAS  Google Scholar 

  • Li S, Guo ZP, Wang CY, Wallace GG, Liu HK (2013) Flexible cellulose based polypyrrole-multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. J Mater Chem A 1:14300–14305

    Article  CAS  Google Scholar 

  • Liang G, Zhu L, Xu J, Fang D, Bai Z, Xu W (2013) Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochim Acta 103:9–14

    Article  CAS  Google Scholar 

  • Liu Y, Zhou X, Guo Y (2009) Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material. Electrochim Acta 54:3184–3190

    Article  CAS  Google Scholar 

  • Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Shen L, Zhang L, Zhang X (2012) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324

    Article  CAS  Google Scholar 

  • Mohana RAL, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24:5045–5064

    Article  CAS  Google Scholar 

  • Oliveira AHP, Oliveira HP (2014) Carbon nanotube/polypyrrole nanofibers core–shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J Power Sources 268:45–49

    Article  CAS  Google Scholar 

  • Pasta M, Mantia FL, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 6:452–458

    Article  CAS  Google Scholar 

  • Patois T, Lakard B, Martin N, Fievet P (2010) Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synth Met 160:2180–2185

    Article  CAS  Google Scholar 

  • Raudsepp T, Marandi M, Tamm T, Sammelselg V, Tamm J (2008) Study of the factors determining the mobility of ions in the polypyrrole films doped with aromatic sulfonate anions. Electrochim Acta 53:3828–3835

    Article  CAS  Google Scholar 

  • Saidman SB (2003) Influence of anion and pH on the electrochemical behaviour of polypyrrole synthesised in alkaline media. Electrochim Acta 48:1719–1726

    Article  CAS  Google Scholar 

  • Shi X, Hu Y, Li M, Duan YY, Wang Y, Chen L, Zhang L (2014) Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors. Cellulose 21:2337–2347

    Article  CAS  Google Scholar 

  • Shieh JY, Zhang SH, Wu CH, Yu HH (2014) A facile method to prepare a high performance solid-state flexible paper-based supercapacitor. Appl Surf Sci 313:704–710

    Article  CAS  Google Scholar 

  • SouzaVHR Oliveira MM, Zarbin AJG (2014) Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces. J Power Sources 260:34–42

    Article  CAS  Google Scholar 

  • Sultana I, Rahman MM, Li S, Wang J, Wang C, Wallace GG, Liu HK (2012) Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochim Acta 60:201–205

    Article  CAS  Google Scholar 

  • Tang Z, Wu J, Li Q, Lan Z, Fan L, Lin J, Huang M (2010) The preparation of poly(glycidyl acrylate)–polypyrrole gel-electrolyte and its application in dye-sensitized solar cells. Electrochim Acta 55:4883–4888

    Article  CAS  Google Scholar 

  • Turhan MC, Weiser M, Killian MS, Leitner B, Virtanen S (2011) Electrochemical polymerization and characterization of polypyrrole on Mg–Al alloy (AZ91D). Synth Met 161:360–364

    Article  CAS  Google Scholar 

  • Wang J, Too CO, Zhou D, Wallace GG (2005) Novel electrode substrates for rechargeable lithium/polypyrrole batteries. J Power Sources 140:162–167

    Article  CAS  Google Scholar 

  • Wang H, Leaukosol N, He Z, Fei G, Si C, Ni Y (2013) Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites. Cellulose 20:1587–1601

    Article  CAS  Google Scholar 

  • Wu QF, He KX, Mi HY, Zhang XG (2007) Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Mater Chem Phys 101:367–371

    Article  CAS  Google Scholar 

  • Xu J, Li M, Wu L, Sun Y, Zhu L, Gu S, Liu L, Bai Z, Fang D, Xu W (2014) A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. J Power Sources 257:230–236

    Article  CAS  Google Scholar 

  • Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015a) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363

    Article  CAS  Google Scholar 

  • Xu R et al (2015b) Highly conductive, twistable and bendable polypyrrole-carbon nanotube fiber for efficient supercapacitor electrodes. RSC Adv 5:22015–22021

    Article  CAS  Google Scholar 

  • Yaghoubidoust F, Wicaksono DHB, Chandren S, Nur H (2014) Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric. J Mol Struct 1075:486–493

    Article  CAS  Google Scholar 

  • Yue B, Wang C, Ding X, Wallace GG (2013) Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochim Acta 113:17–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51303022, 51203018) and the Shanghai Municipal Natural Science Foundation (12ZR1400400). The research was also funded by the Fundamental Research Funds for the Central Universities (2232015D3-17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaisheng Cai or Yaping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Cai, Z., Zhao, Y. et al. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23, 637–648 (2016). https://doi.org/10.1007/s10570-015-0795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0795-8

Keywords

Navigation