Abstract
Four types of kenaf bast fibers were prepared via a combination of Wise treatments, for delignification, and alkaline treatments, for the removal of hemicellulose. Each type of kenaf bast fiber with different refining processes were nano fibrillated by grinding. Resulting, cellulose nanofiber (CNF) sheet was obtained from CNF by vacuum filtration (Scheme 1). The structures and properties of these CNF sheets then were investigated to determine how the CNF components had affected these properties. All of the CNFs from different refining processes were classified as a cellulose Iβ type by X-ray diffraction. However, the mechanical properties (Young’s modulus, tensile strength and toughness) of the CNF sheet with Wise treatment were higher than the properties of the other three CNF sheets. These results strongly suggested that alkaline treatment was unnecessary for the removal of hemicellulose, and that the application of the Wise treatment effectively imparted high mechanical properties to the cellulose microfiber.

Schematic roots for getting cellulose nanofiber from biomass with various treatments and fibrillation methods







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791. doi:10.1007/s10570-010-9427-5
Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979. doi:10.1016/j.carbpol.2011.08.078
Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023. doi:10.1007/s10570-009-9334-9
Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278. doi:10.1021/bm700624p
Ansari F, Galland S, Johansson M et al (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos Part A Appl Sci Manuf 63:35–44. doi:10.1016/j.compositesa.2014.03.017
Boncel S, Sundaram RM, Windle AH, Koziol KKK (2011) Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. ACS Nano 5:9339–9344. doi:10.1021/nn202685x
Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos Part A Appl Sci Manuf 37:423–429. doi:10.1016/j.compositesa.2005.05.045
Chang F, Lee SH, Toba K et al (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46:393–403. doi:10.1007/s00226-011-0416-0
Charles LW, Bledsoe VK, Bledsoe RE (2002) Kenaf harvesting and processing. Trends New Crop New Uses 9:340–347
Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z
Dufresne A, Cavaille J, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. Sugar Beet Cellul Microfibrils 64:1185–1194. doi:10.1002/(sici)1097-4628(19970509)64:6<1185:aid-app19>3.0.co;2-v
Fujisawa S, Saito T, Kimura S et al (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi:10.1021/bm400178m
Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. doi:10.1021/bm801065u
Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14:1705–1709. doi:10.1021/bm400377e
Gierer J (1985) Chemistry of delignification—part 1: general concept and reactions during pulping. Wood Sci Technol 19:289–312. doi:10.1007/BF00350807
Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831
Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1021/bm800038n
Ifuku S, Nogi M, Abe K et al (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules 10:1584–1588. doi:10.1021/bm900163d
Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466. doi:10.1007/s00339-007-4175-6
Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n
Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106. doi:10.1016/j.compscitech.2008.03.006
Johansson A, Aaltonen O, Ylinen P (1987) Organosolv pulping—methods and pulp properties. Biomass 13:45–65. doi:10.1016/0144-4565(87)90071-0
Jonoobi M, Harun J, Shakeri A et al (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639
Jonoobi M, Khazaeian A, Tahir PM et al (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095. doi:10.1007/s10570-011-9546-7
Kantouch A, Hebeish A, El-Rafie MH (1970) Action of sodium chlorite on cellulose and cellulose derivatives. Text Res J 40:178–184. doi:10.1177/004051757004000211
Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. doi:10.1007/s10570-012-9684-6
Karimi S, Tahir PM, Karimi A et al (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885. doi:10.1016/j.carbpol.2013.09.106
Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345. doi:10.1016/j.carbpol.2010.04.063
Khristova P, Bentcheva S, Karar I (1998) Soda-AQ pulp blends from kenaf and sunflower stalks. Bioresour Technol 66:99–103. doi:10.1016/S0960-8524(98)00058-3
Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51:281–300. doi:10.1016/S0144-8617(02)00183-2
Kose R, Kondo T (2011) Favorable 3D-network formation of chitin nanofibers dispersed in water prepared using aqueous counter collision. Fiber 67:91–95. doi:10.2115/fiber.67.91
Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068. doi:10.1016/j.biortech.2006.10.018
Liu A, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641. doi:10.1021/bm101296z
Matsuda F, Yamasaki M, Hasunuma T et al (2011) Variation in biomass properties among rice diverse cultivars. Biosci Biotechnol Biochem 75:1603–1605. doi:10.1271/bbb.110082
Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. doi:10.1023/A:1021013921916
Morimune S, Kotera M, Nishino T et al (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415–4421. doi:10.1021/ma200176r
Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68:277–281. doi:10.1016/S0308-8146(99)00188-0
Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716. doi:10.1021/bm0703416
Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part B: Polym Phys 33:1647–1651. doi:10.1002/polb.1995.090331110
Nishino T, Matsui R, Nakamae K (1999) Elastic modulus of the crystalline regions of chitin and chitosan. J Polym Sci, Part B: Polym Phys 37:1191–1196. doi:10.1002/(SICI)1099-0488(19990601)37:11<1191:AID-POLB13>3.0.CO;2-H
Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286. doi:10.1016/S0266-3538(03)00099-X
Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi:10.1021/ma049300h
Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852. doi:10.1002/adma.200702559
Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. doi:10.1002/adma.200803174
Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961. doi:10.1016/j.compscitech.2009.04.017
Okahisa Y, Abe K, Nogi M et al (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347. doi:10.1016/j.compscitech.2011.05.006
Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi:10.1039/c2sm27344f
Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544. doi:10.1016/j.compscitech.2006.12.012
Puangsin B, Yang Q, Saito T, Isogai A (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Int J Biol Macromol 59:208–213. doi:10.1016/j.ijbiomac.2013.04.016
Qua EH, Hornsby PR, Sharma HSS et al (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi:10.1002/app.30116
Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s
Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970
Saito T, Kuramae R, Wohlert J et al (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253. doi:10.1021/bm301674e
Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. doi:10.1146/annurev-arplant-042809-112315
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003
Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207. doi:10.1016/j.compscitech.2008.03.023
Soykeabkaew N, Nishino T, Peijs T (2009) All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos Part A Appl Sci Manuf 40:321–328. doi:10.1016/j.compositesa.2008.10.021
Sun RC, Tomkinson J, Ma PL, Liang SF (2000) Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydr Polym 42:111–122. doi:10.1016/S0144-8617(99)00136-8
Suzuki K, Okumura H, Kitagawa K et al (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210. doi:10.1007/s10570-012-9843-9
Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294. doi:10.1002/(SICI)1097-0126(199811)47:3<291:AID-PI11>3.0.CO;2-1
Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi:10.1021/bm101103p
Wise LE, Evelyn KR (1947) Quantitative isolation of hemicelluloses and summative analysis of wood. Inst Pap Chem 19:459–462. doi:10.1021/ac60007a010
Wise LE, Maxine M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43
Yang Q, Fujisawa S, Saito T, Isogai A (2012) Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19:695–703. doi:10.1007/s10570-012-9683-7
Yang Q, Saito T, Isogai A (2013) Transparent, flexible, and high-strength regenerated cellulose/saponite nanocomposite films with high gas barrier properties. J Appl Polym Sci 130:3168–3174. doi:10.1002/app.39564
Yano H, Hirose A, Collins PJ, Yazaki Y (2001) Effects of the removal of matrix substances as a pretreatment in the production of high strength resin impregnated wood based materials. J Mater Sci Lett 20:1125–1126. doi:10.1023/A:1010992307614
Yousefi H, Nishino T, Faezipour M et al (2011) Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12:4080–4085. doi:10.1021/bm201147a
Zhao HP, Feng XQ, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:1–3. doi:10.1063/1.2450666
Acknowledgments
We gratefully acknowledge the technical assistance from Tomoko Ohshima. This work was partly supported by Grants-in-Aid from the NC-CARP project and the Ministry of Education, Culture, Sports, Science and Technology, Japan to Kobe University, and Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction, Kobe) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nobuta, K., Teramura, H., Ito, H. et al. Characterization of cellulose nanofiber sheets from different refining processes. Cellulose 23, 403–414 (2016). https://doi.org/10.1007/s10570-015-0792-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-015-0792-y


