Skip to main content
Log in

Cellulose in NaOH–water based solvents: a review

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The article is a critical review of all aspects of the dissolution of cellulose in NaOH-based aqueous solutions: from the background properties of the solvent itself, to the mechanisms of cellulose fibre swelling and dissolution, solution structure and properties and influence of additives and, finally, to the properties of various materials (fibres, films, aerogels, composites and interpenetrated networks) prepared from these solutions. A historical evolution of the research on this topic is presented. The pros and cons of NaOH-based aqueous solvent for cellulose are summarised and some prospects are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    Article  CAS  Google Scholar 

  • Abe Y, Mochizuki A (2002) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. I. Effect of membrane preparation conditions on its permeation characteristics. J Appl Polym Sci 84:2302–2307

    Article  CAS  Google Scholar 

  • Abe Y, Mochizuki A (2003) Hemodialysis membrane prepared from cellulose/N-methylmorpholine-N-oxide solution. II. Comparative studies on the permeation characteristics of membranes prepared from N-methylmorpholine-N-oxide and cuprammonium solutions. J Appl Polym Sci 89:333–339

    Article  CAS  Google Scholar 

  • Adusumali RB, Reifferscheid M, Weber H, Roeder T, Sixta H, Gindl W (2006) Mechanical properties of regenerated cellulose fibres for composites. Macromol Symp 244:119–125

    Article  CAS  Google Scholar 

  • Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664

    Article  CAS  Google Scholar 

  • Antropoff A, Sommer R (1926) Das räumliche Diagramm des Dreistoffsystems NaOH–NaCl–H2O. Z Phys Chem 123:161–198

    Google Scholar 

  • ASTM D4243 (2009) Standard test method for measurement of average viscometric degree of polymerization of new and aged electrical papers and boards

  • ASTM D1695 (2012) Standard terminology of cellulose and cellulose derivatives

  • ASTM D1795 (2013) Standard test method for intrinsic viscosity of cellulose

  • Bartunek R (1955) Uber die viskosierung von cellulose mit verschiedenen alkalien. Das Pap 9:254–262

    CAS  Google Scholar 

  • Bergenstrahle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund P-O, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12

    Article  CAS  Google Scholar 

  • Boerstel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379

    Article  Google Scholar 

  • Borgin K, Stamm AJ (1950) The exchange of radioactive zinc between cellulose and sodium hydroxide-sodium zincate solutions. J Phys Colloid Chem 54:772–777

    Article  CAS  Google Scholar 

  • Bredereck K, Stefani HW, Beringer J, Schulz F (2003) Alkali- und Flüssigammoniakbehandlung von Lyocellfasern. Melliand Textilberichte 58:58–64

    Google Scholar 

  • British Celanese (1925) GB Patent 263,810

  • Cai J, Zhang LN (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibres prepared from cellulose in NaOH:urea aqueous solutions. Macromol Rapid Commun 25:1558–1562

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007a) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J, Wang L, Zhang L (2007b) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008a) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008b) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154

    Article  CAS  Google Scholar 

  • Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    Article  CAS  Google Scholar 

  • Cao X, Deng R, Zhang L (2006) Structure and properties of cellulose films coated with polyurethane/benzyl starch semi-IPN coating. Ind Eng Chem Res 45:4193–4199

    Article  CAS  Google Scholar 

  • Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Zhang L (2009a) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473

    Article  CAS  Google Scholar 

  • Chang C, Peng J, Zhang L, Pang D-W (2009b) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776

    Article  CAS  Google Scholar 

  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010a) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Cai J, Zhang L (2010b) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  • Chang C, Han K, Zhang L (2011) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by IPN strategy. Polym Adv Technol 22:1329–1334

    Article  CAS  Google Scholar 

  • Chanzy H, Roche E (1976) Fibrous transformation of Valonia cellulose I into cellulose II. J Appl Polym Symp 28:701–711

    CAS  Google Scholar 

  • Chanzy H, Noe P, Paillet M, Smith P (1983) Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci 37:239–259

    CAS  Google Scholar 

  • Chaudemanche C, Navard P (2011) Influence of fibre morphology on the swelling and dissolution mechanisms of Lyocell regenerated cellulose fibres. Cellulose 18:1–15

    Article  CAS  Google Scholar 

  • Chen Y, Zhang L, Gu J, Liu J (2004) Physical properties of microporous membranes prepared by hydrolyzing cellulose/soy protein blends. J Membr Sci 241:393–402

    Article  CAS  Google Scholar 

  • Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 4:2839–2848

    Article  CAS  Google Scholar 

  • Chen X, Burger C, Wan F, Zhang J, Rong L, Hsiao B, Chu B, Cai J, Zhang L (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NaOH–urea aqueous solutions. Biomacromolecules 8:1918–1926

    Article  CAS  Google Scholar 

  • Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Mater Sci Eng, C 32:452–463

    Article  CAS  Google Scholar 

  • Cohen-Adad R, Tranquard A, Peronne R, Negri P, Rollet AP (1960) Le système eau-hydroxyde de sodium. Comptes Rendus de l’Académie des Sciences, Paris, France 251:2035–2037

    Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006a) Swelling and dissolution of cellulose, Part I: Free floating cotton and wood fibres in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2006b) Swelling and dissolution of cellulose, Part II: Free floating cotton and wood fibres in NaOH water-additives systems. Macromol Symp 244:19–30

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P (2008) Swelling and dissolution of cellulose, Part III: Plant fibres in aqueous systems. Cellulose 15:67–74

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008a) Swelling and dissolution of cellulose, Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr Polym 72:590–596

    Article  CAS  Google Scholar 

  • Cuissinat C, Navard P, Heinze T (2008b) Swelling and dissolution of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80

    Article  CAS  Google Scholar 

  • Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I: In solutions of NaOH, particularly at T°C below the normal. J Text Inst 25:T174–T196

    Article  CAS  Google Scholar 

  • Davidson GF (1936) The dissolution of chemically modified cotton cellulose inalkaline solutions. Part II: A comparison of the solvent action of solutions of lithium, sodium, potassium and tetramethylammonium hydroxides. J Text Inst 27:T112–T130

    Article  Google Scholar 

  • Davidson GF (1937) The solution of chemically modified cotton cellulose in alkaline solutions. Part 3—In solutions of sodium and potassium hydroxide containing dissolved zinc, beryllium and aluminum oxides. J Text I 28:T27–T44

    Article  CAS  Google Scholar 

  • Demilecamps A, Reichenauer G, Rigacci A, Budtova T (2014) Cellulose–silica composite aerogels from “one-pot” synthesis. Cellulose 21:2625–2636

    Article  CAS  Google Scholar 

  • Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300

    Article  CAS  Google Scholar 

  • Deng M, Zhou Q, Du A, Kasteren JMN, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Mater Lett 63:1851–1854

    Article  CAS  Google Scholar 

  • Dos Santos N (2013) Influence of chemical and enzymatic treatments on a variety of wood pulps on their dissolution in NaOH–water. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris/Cemef, Sophia-Antipolis

  • Dos Santos N, Puls J, Saake B, Navard P (2013) Effects of nitren extraction on a dissolving pulp and influence on cellulose dissolution in NaOH–water. Cellulose 20:2013–2026

    Article  CAS  Google Scholar 

  • Duchemin BJC, Newman RH, Staiger MP (2009a) Structure–property relationship of all-cellulose composites. Compos Sci Technol 69:1225–1230

    Article  CAS  Google Scholar 

  • Duchemin BJC, Mathew AP, Oksman K (2009b) All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos A 40:2031–2037

    Article  CAS  Google Scholar 

  • Duchemin BJC, Staiger MP, Ticker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221

    Article  CAS  Google Scholar 

  • Egal M (2006) Structure and properties of cellulose/NaOH aqueous solutions, gels and regenerated objects. Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris/Cemef, Sophia-Antipolis

  • Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0°C and the limit of cellulose dissolution. Biomacromolecules 8:2282–2287

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide–urea aqueous solutions. Cellulose 15:361–370

    Article  CAS  Google Scholar 

  • Ershova O, da Costa EV, Fernandes AJS, Domingues MR, Evtuguin DV, Sixta H (2012) Effect of urea on cellulose degradation under conditions of alkaline pulping. Cellulose 19:2195–2204

    Article  CAS  Google Scholar 

  • Fink HP, Dautzenberg H, Kunze J, Philipp B (1986) The composition of alkali cellulose: a new concept. Polymer 27:944–948

    Article  CAS  Google Scholar 

  • Fink HP, Walenta E, Kunze J, Mann G (1995) Wide angle X-ray and solid state C-NMR studies of cellulose alkalisation. In: Kennedy JF et al (eds) Cellulose and cellulose derivatives: physico-chemical aspects and industrial applications. Woodhead Publishing, Cambridge

    Google Scholar 

  • Fink HP, Gensrich J, Rihm R (2001a) Structure and properties of CarbaCell-type cellulosic fibres. In: Proceedings of the 6th Asian textile conference, Hong-Kong, 22–24 Aug

  • Flemming N, Thaysen AC (1919) On the deterioration of cotton on wet storage. Biochem J 14:25–29

    Article  Google Scholar 

  • Flory PJ, Spurr OKJ, Carpenter DK (1958) Intrinsic viscosities of cellulose derivatives. J Polym Sci. 27:231–240

    Article  CAS  Google Scholar 

  • Franks NA, Varga JK (1979) Process for making precipitated cellulose. US Patent 4,145,532

  • Freytag R, Donzé JJ (1983) Alkali treatment of cellulose fibres. In: Lewin M, Sello SB (eds) Handbook of fiber science and technology: volume I. Chemical processing of fibers and fabrics, fundamentals and preparation, part A. Marcel Deckker, New York, pp 91–121

    Google Scholar 

  • Garcia-Ramirez M, Cavaille JY, Dupeyre D, Peguy A (1994) Cellulose-polyamide 66 blends. I. Processing and characterisation. J Polym Sci, Part B: Polym Phys 32:1437–1448

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose–N-methylmorpholine–N-oxyde–water solutions. Biomacromolecules 8:424–432

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277

    Article  CAS  Google Scholar 

  • Geet Van (1972) Hydration number of sodium ions determined by sodium magnetic resonance. J Am Chem Soc 94:5583–5587

    Article  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 4:10221–10225

    Article  CAS  Google Scholar 

  • Gindl W, Schoberl T, Keckes J (2006) Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Appl Phys A 83(1):19–22

    Article  CAS  Google Scholar 

  • Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Röder T, Sixta H, Schöberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibres related to molecular orientation. Polymer 49:792–799

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown R Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012a) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown R Jr, Burchard W, French AD, Klemm DO, Navard P, Nishiyama Y (2012b) Erratum to: about the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:599

    Article  Google Scholar 

  • Graenacher C (1934) Cellulose dissolution US Patent N 1,943,176

  • Graenacher C, Sallman R (1939) Cellulose solutions. US Patent 2,179,181

  • Guilminot E, Gavillon R, Chatenet M, Berthon-Fabry S, Rigacci A, Budtova T (2008) New nanostructured carbons based on porous cellulose: elaboration, pyrolysis and subsequent use as substrate for proton exchange membrane fuel cell electrocatalyst particles. J Power Sources 185:717–726

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 10:746–756

    Article  CAS  Google Scholar 

  • Haigler CH, Grimsom MJ, Gervais J, Le Moigne N, Höfte H, Monasse B, Navard P (2014) Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage. PlusOne 9(4):e93981

    Article  CAS  Google Scholar 

  • Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813

    Article  CAS  Google Scholar 

  • Harrison W (1928) Manufacture of carbohydrate derivatives. US Patent 1,684,732

  • Hattori K, Abe E, Yoshide T, Cuculo JA (2004) New solvents for cellulose. II Ethylenediamine/thiocyanate salt system. Polym J 36:123–130

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552

    Article  CAS  Google Scholar 

  • Hill JW, Jacobsen RA (1938) Chemical process. US Patent 2,134,825

  • Hock CW (1950) Degradation of cellulose as revealed microscopically. Text Res J 20:141–151

    Article  CAS  Google Scholar 

  • Huang Y, Zhang L, Yang J, Zhang X, Xu M (2013) Structure and properties of cellulose films reinforced by chitin whiskers. Macromol Mater Eng 298:259–262

    Article  CAS  Google Scholar 

  • Ingildeev D, Hermanutz F, Bredereck K, Effenberger F (2012) Novel cellulose/polymer blend fibres obtained using ionic liquids. Macromol Mater Eng 297:585–594

    Article  CAS  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Innovia Films (2015) Data sheet of Cellophane™ P25. Ref A215—2 of 2—Edition UK—0112

  • Isobe N, Sekine M, Kimura S, Wada M, Kuga S (2011) Anomalous reinforcing effects in cellulose gel-based polymeric nanocomposite. Cellulose 18:327–333

    Article  CAS  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali–urea solution. Carbohydr Polym 89:1298–1300

    Article  CAS  Google Scholar 

  • Isobe N, Noguchi K, Nishiyama Y, Kimura S, Wada M, Kuga S (2013) Role of urea in alkaline dissolution of cellulose. Cellulose 20:97–103

    Article  CAS  Google Scholar 

  • Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jiang G, Huang W, Li L, Wang X, Pang F, Zhang Y, Wang H (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018

    Article  CAS  Google Scholar 

  • Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose − NaOH − urea aqueous system. J Phys Chem B 118:10250–10257

    Article  CAS  Google Scholar 

  • Jin H, Nishiyama T, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surface A240:63–67

    Article  CAS  Google Scholar 

  • Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH:thiourea/urea aqueous solutions. Carbohydr Polym 342:51–858

    Google Scholar 

  • Johnson DL (1969) Compounds dissolved in cyclic amine oxides. US Patent 3,447,939

  • Jolan AH, Prudhomme RE (1978) Studies of polymer-cellulose blends prepared from solution. J Appl Polym Sci 22:2533–2542

    Article  CAS  Google Scholar 

  • Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183

    Article  CAS  Google Scholar 

  • Kadokawa J, Hirohama K, Mine S, Kato T, Yamamoto K (2012) Facile preparation of chitin/cellulose composite films using ionic liquids. J Polym Environ 20:37–42

    Article  CAS  Google Scholar 

  • Kamide K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16–12:857–866

    Article  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1985) Determination of intramolecular hydrogen bonds and selective coordination of sodium cation in alkalicellulose by CP/MASS C13 NMR. Polym J 17(5):707–711

    Article  CAS  Google Scholar 

  • Kamide K, Saito M, Kowsaka K (1987) Temperature dependence of limiting viscosity number and radius of gyration for cellulose dissolved in aqueous 8% sodium hydroxide solution. Polym J 19:1173–1181

    Article  CAS  Google Scholar 

  • Kamide K, Yasuda K, Matsui T, Okajima K, Yamashiki T (1990) Structural change in alkali-soluble cellulose solid during its dissolution into alkaline solutions. Cellul Chem Technol 24:23–31

    CAS  Google Scholar 

  • Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24–1:71–96

    Article  Google Scholar 

  • Kasahara K, Sasaki H, Donkai N, Takagishi T (2004) Effect of processing and reactive dyeing on the swelling and pore structure of lyocell fibers. Text Res J 74:509–515

    Article  CAS  Google Scholar 

  • Kasai MR (2002) Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose. J Appl Polym Sci 86:2189–2193

    Article  CAS  Google Scholar 

  • Keller A (1957) A note on single crystals in polymers: evidence for a folded chain configuration. Philos Mag 2:1171–1175

    Article  CAS  Google Scholar 

  • Keller A (1968) Polymer crystals. Rep Prog Phys 31:623–704

    Article  CAS  Google Scholar 

  • Kihlman M, Wallberg O, Stigsson L, Germgard U (2011) Dissolution of dissolving pulp in alkaline solvents after stream explosion pretreatments. Holzforschung 65:613–617

    Article  CAS  Google Scholar 

  • Kihlman M, Aldaeus F, Chedid F, Germgård U (2012) Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions. Holzforschung 66:601–606

    Article  CAS  Google Scholar 

  • Kim IS, Kim JP, Kwak SY, Ko YS, Kwon YK (2006) Novel regenerated cellulosic material prepared by an environmentally-friendly process. Polymer 47:1333–1339

    Article  CAS  Google Scholar 

  • Kim J, Wang N, Chen Y, Lee S-K, Yun G-Y (2007) Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14:217–223

    Article  CAS  Google Scholar 

  • Kleinert TN (1958) Characterisation of dissolving pulps by their solubility in alkaline sodium-zincate solutions. TAPPI 41:134–136

    CAS  Google Scholar 

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  • Kunze J, Fink HP (2005) Structural changes and activation of cellulose by caustic soda solution with urea. Macromol Symp 223:175–187

    Article  CAS  Google Scholar 

  • Kunze J, Ebert A, Lang H, Philipp B (1985) Na-NMR spekroskopische untersuchungen zur hydratation von natriumhydroxid in wäbriger lösung. Z Phys Chemie 266:49–58

    CAS  Google Scholar 

  • Kuo YN, Hong J (2005) Investigation of solubility of microcrystalline cellulose in aqueous NaOH. Polym Adv Technol 16:425–428

    Article  CAS  Google Scholar 

  • Laszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876

    Article  CAS  Google Scholar 

  • Laszkiewicz B, Cuculo JA (1993) Solubility of cellulose III in sodium hydroxide solution. J Appl Polym Sci 50:27–34

    Article  Google Scholar 

  • Laszkiewicz B, Wcislo P (1990) Sodium cellulose formation by activation process. J Appl Polym Sci 39:415–425

    Article  CAS  Google Scholar 

  • Le Moigne N (2008) Mécanismes de gonflement et de dissolution des fibres de cellulose. Thèse de doctorat. Ecole Nationale Supérieure des Mines de Paris/CEMEF. Sophia Antipolis

  • Le Moigne N, Navard P (2010) Dissolution mechanism of wood cellulose fibres in NaOH–water. Cellulose 17:31–45

    Article  CAS  Google Scholar 

  • Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332

    Article  CAS  Google Scholar 

  • Le KA, Rudaz C, Budtova T (2014) Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr Polym 105:237–243

    Article  CAS  Google Scholar 

  • Legrand C, Grund A (1952) Formation des alkali-celluloses en milieu hydroalcoolique. J Polym Sci 9:527–530

    Article  CAS  Google Scholar 

  • Li K, Song J, Xu M, Kuga S, Zhang L, Cai J (2014) Extraordinary reinforcement effect of three-dimensionally nanoporous cellulose gels in poly(ε-caprolactone) bionanocomposites. ACS Appl Mater Interfaces 6:7204–7213

    Article  CAS  Google Scholar 

  • Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602

    Article  CAS  Google Scholar 

  • Liebert TF (2010) Cellulose solvents-remarkable history, bright future. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, ACS symposium series 1033. Oxford Press University, Oxford, pp 3–54

  • Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135

    Article  CAS  Google Scholar 

  • Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M-A, Wendland M, Rosenau T (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: Synthesis and properties. Holzforschung 63:3–11

    Article  CAS  Google Scholar 

  • Liebner F, Haimer E, Wendland M, Neouze M-A, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352

    Article  CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Lipponen S, Saarikoski E, Rissanen M, Seppala J (2012) Preparation and properties of cellulose/PE-co-AA blends. Eur Polym J 48:1439–1445

    Article  CAS  Google Scholar 

  • Liu W, Budtova T (2012) Ionic liquid: a powerful solvent for homogeneous starch–cellulose mixing and making films with tuned morphology. Polymer 53:5779–5787

    Article  CAS  Google Scholar 

  • Liu S, Zhang J, Zhang L, Guan J, Wang J (2006) Synthesis and alignment of iron oxide nanoparticles in a regenerated cellulose film. Macromol Rapid Commun 27:2084–2089

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Zhou J, Xiang J, Sun J, Guan J (2008) Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibres. Chem Mater 20:3623–3628

    Article  CAS  Google Scholar 

  • Liu W, Budtova T, Navard P (2011a) Influence of ZnO on the properties of dilute and semi-dilute cellulose–NaOH–water solutions. Cellulose 18:911–920

    Article  CAS  Google Scholar 

  • Liu S, Zhou J, Zhang L (2011b) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673

    Article  CAS  Google Scholar 

  • Liu S, Ke D, Zeng J, Zhou J, Peng T, Zhang L (2011c) Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose 18:945–956

    Article  CAS  Google Scholar 

  • Liu S, Yu T, Hu N, Liu R, Liu X (2013) High strength cellulose aerogels prepared by spatially confined synthesis of silica in bioscaffolds. Colloid Surf A 439:159–166

    Article  CAS  Google Scholar 

  • Lu Y, Zhang L (2002) Interfacial structure and properties of regenerated cellulose films coated with superthin polyurethane/benzoyl konjac glucomannan coating. Ind Eng Chem Res 41:1234–1241

    Article  CAS  Google Scholar 

  • Lu Y, Zhang L, Xao P (2004) Structure, properties and biodegradability of water resistant regenerated cellulose films coated with polyurethane/benzyl konjac glucomannan semi-IPN coating. Polym Degrad Stab 86:51–57

    Article  CAS  Google Scholar 

  • Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115:12801–12808

    Article  CAS  Google Scholar 

  • Lue A, Zhang L (2008) Investigation of the scaling law on cellulose solution prepared at low temperature. J Phys Chem B 112:4488–4495

    Article  CAS  Google Scholar 

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH–Thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366

    Article  CAS  Google Scholar 

  • Ma H, Hsiao BS, Chu B (2011) Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 52:2594–2599

    Article  CAS  Google Scholar 

  • Maeda H, Kawada H, Kawai T (1970a) Crystallisation of cellulose from dilute solutions. Die Makromolekulare Chemie 131:169–184

    Article  CAS  Google Scholar 

  • Maeda H, Kawada H, Kawai T (1970b) Crystallization of cellulose from dilute solution. J Polym Sci Part C Polym Symp 30:543–549

    Article  Google Scholar 

  • Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) Preparation and properties of bacterial cellulose aerogel. Jpn J Polym Sci Technol 63:135–137

    CAS  Google Scholar 

  • Mao Y, Zhou J, Cai J, Zhang L (2006) Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J Membr Sci 279:246–255

    Article  CAS  Google Scholar 

  • Marsano E, Corsini P, Canetti M, Freddi G (2008) Regenerated cellulose–silk fibroin blend fibres. Int J Biol Macomol 43:106–114

    Article  CAS  Google Scholar 

  • Marsh JT (1941) The growth and structure of cotton, mercerising. Chapman & Hall, London

    Google Scholar 

  • Masson JF, Manley RS (1991a) Miscible blends of cellulose and poly(vinylpyrrolidone). Macromolecules 24:6670–6679

    Article  CAS  Google Scholar 

  • Masson JF, Manley RS (1991b) Cellulose/poly(4-vinylpyridine) blends. Macromolecules 24:5914–5921

    Article  CAS  Google Scholar 

  • Matsui T, Sano T, Yamane C, Kamide K, Okajima K (1995) Structure and morphology of cellulose films coagulated from novel cellulose/aqueous sodium hydroxide solutions by using aqueous sulphuric acid with various concentrations. Polym J 27:797–812

    Article  CAS  Google Scholar 

  • McCormick CL, Lichatowich DK (1979) Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. J Polym Sci Polym Lett Ed 17:479–484

    Article  CAS  Google Scholar 

  • McCorsley III CC, Varga JK (1979) A process for making a precursor of a solution of cellulose. US Patent 4,142,913

  • Medronho B, Lindman B (2014a) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2014b) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci. doi:10.1016/j.cis.2014.05.004

    Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Medronho B, Duarte H, Alves L, Antunes F, Romano A, Lingman B (2015) Probing cellulose amphiphilicity. Nord Pulp Pap Res J 30:58–66

    Article  CAS  Google Scholar 

  • Mercer J (1850) Improvements in the preparation of cotton and others fabrics and other fibrous materials. British Patent 13,296

  • Miller-Chou B, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270

    Article  CAS  Google Scholar 

  • Miyamoto H, Yamane C, Seguchi M, Okajima K (2009) Structure and properties of cellulose–starch blend films regenerated from aqueous sodium hydroxide solution. Food Sci Technol Res 15:403–412

    Article  CAS  Google Scholar 

  • Morgado D, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NAOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712

    Article  CAS  Google Scholar 

  • Musatova GN, Mogilevskii EM, Ginzberg MA, Arkhangelskii DN (1972) The dissolution temperature of cellulose xanthate. Fibre Chem 2:451–453

    Article  Google Scholar 

  • Nadhan A, Venu A, Rajulu V, Li R, Jie C, Zhang L (2012) Properties of regenerated cellulose short fibers/cellulose green composite films. J Polym Environ 20:454–458

    Article  CAS  Google Scholar 

  • Nägeli (1864) Ueber den inneren Bau der vegetabilischen Zellenmembranen Sitzber. Bay Akad Wiss Munchen 1:282–323

    Google Scholar 

  • Nishimura H, Sarko A (1987) Mercerization of cellulose. III. Changes in crystallites sizes. J Appl Polym Sci 33:855–866

    Article  CAS  Google Scholar 

  • Nishimura H, Sarko A (1991) Mercerization of cellulose. VI. Crystal and molecular structure of Na–cellulose IV. Macromolecules 24:771–778

    Article  CAS  Google Scholar 

  • Nishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8:2712–2716

    Article  CAS  Google Scholar 

  • Nishio Y, Manley RS (1990) Blends of cellulose with nylon and poly(e-caprolactone) prepared by a solution-coagulation method. Polym Eng Sci 30:71–82

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nishio Y, Roy SK, Manley RS (1987) Blends of cellulose with polyacrylonitrile prepared from N,N-dimethylacetamide–lithium chloride solutions. Polymer 28:1385–1390

    Article  CAS  Google Scholar 

  • Nishio Y, Hirose N, Takahashi T (1989a) Thermal analysis of cellulose/poly(ethylene oxide) blends. Polym J 21:347–351

    Article  CAS  Google Scholar 

  • Nishio Y, Haratani T, Takahashi T, Manley RS (1989b) Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer–polymer interaction by melting point depression analysis. Macromolecules 22:2547–2549

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Okano T (2000) Mechanism of mercerisation revealed by X-ray diffraction. J Wood Sci 46:452–457

    Article  CAS  Google Scholar 

  • Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264

    Article  CAS  Google Scholar 

  • Okajima K, Yamane C (1997) Cellulose filament spun from cellulose aqueous NaOH solution system. Cell Commun 4:7–12

    CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerization of cellulose. I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerisation mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Ott E, Spurlin HM, Grafflin MW (1954) In cellulose and cellulose derivatives (part 1). Interscience, New York, p 353

    Google Scholar 

  • Öztürk HB, Bechtold T (2008) Splitting tendency of cellulosic fibers, Part 3: Splitting tendency of viscose and modal fibers. Cellulose 15:101–109

    Article  CAS  Google Scholar 

  • Pääkko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  CAS  Google Scholar 

  • Park T-J, Jung YJ, Coi S-W, Park H, Kim H, Lee SH, Kim JH (2011) Native chitosan/cellulose composite fibres from an ionic liquid via electrospinning. Macromol Res 19:213–215

    Article  CAS  Google Scholar 

  • Pennetier G (1883) Note micrographique sur les altérations du cotton. Bull Soc Ind Rouen 11:235–237

    Google Scholar 

  • Petitpas T (1948) Etude de l’alcali-cellulose: Variations de structure de la cellulose dans les lessives alcalines. Compte-rendu du Laboratoire Central des Services Chimiques de l’Etat (Paris) 226:139–147

    Google Scholar 

  • Pickering SU (1893) The hydrates of sodium, potassium and lithium hydroxides. J Chem Soc 63:890–909

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008a) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solutions. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Nishiyama Y, Rattaz A (2008b) Influence of finishing oil on structure and properties of multifilament fibers from cellulose dope in NaOH/urea aqueous solution. Cellulose 15:81–89

    Article  CAS  Google Scholar 

  • Qi H, Cai J, Zhang L, Kuga S (2009a) Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 10:1597–1602

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2009b) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71:458–467

    Article  CAS  Google Scholar 

  • Qin X, Lu A, Zhang L (2013) Gelation behavior of cellulose in NaOH/urea aqueous system via cross-linking. Cellulose 20:1669–1677

    Article  CAS  Google Scholar 

  • Rahkamo L, Viikari L, Buchert J (1998) Enzymatic and alkaline treatment of hardwood dissolving pulp. Cellulose 5:79–88

    Article  CAS  Google Scholar 

  • Rollet AP, Cohen-Adad R (1964) Les systèmes eau-hydroxyde alcalin. Revue de Chimie Minérale 1:451

    CAS  Google Scholar 

  • Rooke J, de Matos Passos C, Chatenet M, Sescousse R, Budtova T, Berthon-Fabry S, Mosdale R, Maillard F (2011) Synthesis and properties of platinum nanocatalyst supported on cellulose-based carbon aerogel for applications in PEMFCs. J Electrochem Soc 158:B779–B789

    Article  CAS  Google Scholar 

  • Rooke J, Sescousse R, Budtova T, Berthon-Fabry S, Simon B, Chatenet M (2012) Cellulose-based nanostructured carbons for energy conversion and storage devices. In: Rufford T, Hulicova-Jurcakova D, Zhu J (eds) Green carbon materials: advances and applications. Pan Stanford, Singapore, pp 89–111

    Google Scholar 

  • Roy C (2002) Etude de mélanges de cellulose dans des solutions aqueuses de soude. Thèse de doctorat, Ecole des Mines de Paris/Cemef, Sophia-Antipolis

  • Roy C, Budtova T, Navard P, Bedue O (2001) Structure of cellulose–soda solutions at low temperatures. Biomacromolecules 2:687–693

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Mao Y, Zeng M, Li X (2004a) Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution. J Membr Sci 241:265–274

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhou J, Jin H, Chen H (2004b) Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromol Biosci 4:1105–1112

    Article  CAS  Google Scholar 

  • Ruan D, Zhang L, Zhang Z, Xia X (2004c) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite film. J Polym Sci, Part B: Polym Phys 42:367–373

    Article  CAS  Google Scholar 

  • Ruan D, Huang Q, Zhang L (2005) Structure and properties of CdS/regenerated cellulose nanocomposites. Macromol Mater Eng 290:1017–1024

    Article  CAS  Google Scholar 

  • Ruan D, Lue A, Zhang L (2008) Gelation behaviours of cellulose solution dissolved in aqueous NaOH–thiourea at low temperature. Polymer 49:1027–1036

    Article  CAS  Google Scholar 

  • Rudaz C, Budtova T (2013) Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions. Carbohydr Polym 92:1966–1971

    Article  CAS  Google Scholar 

  • Russler A, Lange A, Potthast A, Rosenau T, Berger Nicoletti E, Sixta H, Kosma P (2005) A novel method for analysis of xanthate group distribution in viscoses. Macromol Symp 223:189–200

    Article  CAS  Google Scholar 

  • Russler A, Potthast A, Rosenau T, Lange T, Saake B, Sixta H, Kosma P (2006) Determination of substituent distribution of viscoses by GPC. Holzforschung 60:467–473

    Article  CAS  Google Scholar 

  • Saarikoski E, Lipponen S, Rissanen M, Seppala J (2012) Blending cellulose with polyethylene-co-acrylic acid in alkaline water suspension. Cellulose 19:661–669

    Article  CAS  Google Scholar 

  • Saito G (1939) Das verhalten der zellulose in alkalilosungen. I. Mitteilung. Kolloid-Beihefte 29:365–454

    Google Scholar 

  • Sameii N, Mortazavi SM, Rashidi AS, Sheikhzadah-Najar S (2008) An investigation on the effect of hot mercerization on cotton fabrics made up of open-end yarns. J Appl Polym Sci 8:4204–4209

    CAS  Google Scholar 

  • Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluid 13:261–268

    Article  CAS  Google Scholar 

  • Schultz TP, Biermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Prod Res Dev 22:344–348

    Article  CAS  Google Scholar 

  • Segal L, Eggerton F (1961) Some aspects of the reaction between urea and cellulose. Text Res J 31:460–471

    Article  CAS  Google Scholar 

  • Sescousse R, Budtova T (2009) Influence of processing parameters on regeneration kinetics and morphology of porous cellulose from cellulose–NaOH–water solutions. Cellulose 16:417–426

    Article  CAS  Google Scholar 

  • Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose–NaOH–water mixtures properties and on aerocellulose morphology. Cellulose 17:1137–1146

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011a) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011b) Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J Mater Sci 46:759–765

    Article  CAS  Google Scholar 

  • Shi X, Zhang L, Cai J, Cheng G, Zhang H, Li J, Wang X (2011) A facile construction of supramolecular complex from polyaniline and cellulose in aqueous system. Macromolecules 44:4565–4568

    Article  CAS  Google Scholar 

  • Shi Z, Yang Q, Cai J, Kuga S, Matsumoto Y (2014) Effects of lignin and hemicellulose contents on dissolution of wood pulp in aqueous NaOH/urea solution. Cellulose 21:1205–1215

    Article  CAS  Google Scholar 

  • Shibata M, Teramoto N, Nakamura T, Saitoh Y (2013) All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid. Carbohydr Polym 98:1532–1539

    Article  CAS  Google Scholar 

  • Sobue H, Kiessig H, Hess K (1939) The cellulose–sodium hydroxide–water system as a function of the temperature. Z Phys Chem B 43:309–328

    Article  Google Scholar 

  • Song Y, Zhou J, Zhang L, Wu X (2008) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25

    Article  CAS  Google Scholar 

  • Soykeabkaew N, Arimoto N, Nishino T, Peijs T (2008) All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos Sci Technol 68:2201–2207

    Article  CAS  Google Scholar 

  • Sprague BS, Noether HD (1961) The relationship of fine structure to mechanical properties of stretched saponified acetate fibers. Text Res J 31:858–865

    Article  CAS  Google Scholar 

  • Staudinger H, Mohr R (1941) Uber den unterschied zwischen umgefällten und merzerisierten Cellulosen von den native fasercellulosen. J Prakt Chem 158:233–244

    Article  CAS  Google Scholar 

  • Stenqvist B, Wernersson E, Lund M (2015) Cellulose–water interactions: effect of electronic polarizability. Nord Pulp Pap Res J 30:26–31

    Article  CAS  Google Scholar 

  • Struszczyk H, Ciechanska D (1998) Perspectives of enzymes for processing cellulose for new chemical fibers. Enzyme applications in fiber processing, ACS symposium series 687(25):306–317

    Article  CAS  Google Scholar 

  • Struszczyk H, Wawro D, Ciechanska D, Wrzesniewska-Tosik K, Wojciechowska Z, Nousiainen P, Dolk M (1991) Method for preparation of alkali-soluble cellulose and method for preparation fibres, films and other products from soluble cellulose. Finnish Patent FI 107,335, Polish Patent PL 167,776

  • Struszczyk H, Ciechanska D, Wawro D (1995) Direct soluble cellulose of celsol: properties and behavior. In: Kennedy J (ed) Cellulose and cellulose derivatives, chap 4. Woodhead, Cambridge

    Google Scholar 

  • Struszczyk H, Ciechanska D, Wawro D, Urbanowski A, Guzinska K, Wrzesniewska-Tosik K (2001) Method for the manufacture of fibres, film and other products from modified soluble cellulose. European Patent EP 1,228,098

  • Struszczyk H, Wawro D, Urbanowski A, Mikolajczyk, Starostka P (2002) Process for producing fibres, films, casings and other products from modified soluble cellulose. European Patent EP 1,317,573 B1

  • Suzuki H, Miyazaki Y, Kamide K (1980) Temperature dependence of limiting viscosity number and radius of gyration of cellulose diacetate in acetone. Eur Polym J 16:703–708

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Takahashi M, Ookubo M, Takena H (1991) Solid state 4395 13C NMR spectra analysis of alkalicellulose. Polym J 23:1009–1014

    Article  CAS  Google Scholar 

  • Tasker S, Baadyal JPS, Backson SCE, Richards RW (1994) Hydroxyl accessibility in celluloses. Polymer 35:4717–4721

    Article  CAS  Google Scholar 

  • Tatarova I, MacNaughtan W, Manian AP, Siroka B, Bechtold T (2012) Steam processing of regenerated cellulose fabric in concentrated LiCl/urea solution. Macromol Mater Eng 297:540–549

    Article  CAS  Google Scholar 

  • Tolonen LK, Bergenstråhle-Wohlert M, Sixta H, Wohlert J (2015) The solubility of cellulose in supercritical water studied by molecular dynamics simulations. J Phys Chem B 119:4739–4748

    Article  CAS  Google Scholar 

  • Tripp VW, Rollins ML (1952) Morphology and chemical composition of certain components of cotton fiber cell wall. Anal Chem 24:1721–1728

    Article  CAS  Google Scholar 

  • Trygg J, Fardim P (2011) Enhancement of cellulose dissolution in water-based solvents via ethanol–hydrochloric acid pre-treatment. Cellulose 18:987–994

    Article  CAS  Google Scholar 

  • Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299

    Article  CAS  Google Scholar 

  • Trygg J, Yildir E, Kolakovic R, Sandler N, Fardim P (2014) Anionic cellulose beads for drug encapsulation and release. Cellulose 21:1945–1955

    Article  CAS  Google Scholar 

  • Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papapdoupoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965–971

    Article  CAS  Google Scholar 

  • Turbak AF, El-Kafrawy A, Snyder FW, Auerbach AB (1981) Solvent system for cellulose. US Patent 4,302,252

  • Turner MB, Spear SK, Holbrey JD, Rogers RD (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 5:1379–1384

    Article  CAS  Google Scholar 

  • Twu Y-K, Huang H-I, Chang S-Y, Wang S-L (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohydr Polym 54:425–430

    Article  CAS  Google Scholar 

  • Vehviläinen M, Kamppuri T, Rom M, Janicki J, Ciechanska D, Grönqvist S, Sioika-Aho M, Christoffersson K, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15:671–680

    Article  CAS  Google Scholar 

  • Vehviläinen M, Kamppuri T, Nousiainen P, Kallioinen A, Siika-aho M, Christoffersson K, Rom M, Jaroslaw J (2010) Effect of acid and enzymatic treatment of TCF dissolving pulp on the properties of wet spun cellulosic fibres. Cell Chem Technol 44:147–151

    Google Scholar 

  • Vehviläinen M, Kamppuri T, Grönqvisti S, Rissanen M, Maloney T, Honkanen M, Nousiainen P (2015) Dissolution of enzyme-treated cellulose using freezing-thawing method and the properties of fibres regenerated from the solution. Cellulose 22:1653–1674

    Article  CAS  Google Scholar 

  • Wang Y, Deng Y (2009) The kinetics of cellulose dissolution in sodium hydroxide solution at low temperature. Biotechnol Bioeng 102:1398–1405

    Article  CAS  Google Scholar 

  • Wang Y, Zhoa Y, Deng Y (2008) Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr Polym 72:178–184

    Article  CAS  Google Scholar 

  • Wang W, Zhang P, Zhang S, Li F, Yu J, Lin J (2013) Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohydr Polym 98:1031–1038

    Article  CAS  Google Scholar 

  • Wang W, Li F, Yu J, Navard P, Budtova T (2015) Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH–water solvent. Carbohydr Polym 124:85–89

    Article  CAS  Google Scholar 

  • Warwicker JO, Jeffries R, Colbran RL, Robinson RN (1966) A review of the literature on the effect of caustic soda and other swelling agents on the fine structure of cotton. St Ann’s Press, Manchester, p 93

    Google Scholar 

  • Wawro D, Steplewski W, Bodek A (2009) Manufacture of cellulose fibres from alkaline solutions of hydrothermally-treated cellulose pulp. Fibres Text East Eur 17:18–22

    CAS  Google Scholar 

  • Wendler F, Kosan B, Kreig M, Meister F (2009) Possibilities for the physical modification of cellulose shapes using ionic liquids. Macromol Symp 280:112–122

    Article  CAS  Google Scholar 

  • Wendler F, Meister F, Wawro D, Wesolowska E, Ciechańska D, Saake B, Puls J, Le Moigne N, Navard P (2010) Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres Text East Eur 18:21–30

    CAS  Google Scholar 

  • Wendler F, Persin Z, Stana-Kleinschek K, Reischl M, Ribitsch V, Bohn A, Fink H-P, Meister F (2011) Morphology of polysaccharide blend fibers shaped from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium. Cellulose 18:1165–1178

    Article  CAS  Google Scholar 

  • Wendler F, Schulze T, Ciechanska D, Wesolowska E, Wawro D, Meister F, Budtova T, Liebner F (2012) Cellulose products from solutions: film, fibres and aerogels. In: Navard P (ed) The European Polysaccharide Network of Excellence (EPNOE) Research initiatives and results. Springer, Wien, pp 153–187

    Chapter  Google Scholar 

  • Wu R-L, Wang X-L, Li F, Li H-Z, Wang Y-Z (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574

    Article  CAS  Google Scholar 

  • Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopy studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621

    Article  CAS  Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192

    Article  CAS  Google Scholar 

  • Yamada H, Kowsaka K, Matsui T, Okajima K, Kamide K (1992) Nuclear magnetic study on the dissolution of natural and regenerated celluloses onto aqueous alkali solutions. Cell Chem Technol 26:141–150

    CAS  Google Scholar 

  • Yamane C, Saito M, Kowsaka K, Kataoka N, Sagara K, Kamide K (1994) New cellulosic filament yarn spun from cellulose/aq NaOH solution. In: Proceedings of ‘94 Cellulose R&D, 1st annual meeting of the Cellulose Society of Japan (Cellulose Society of Japan, ed), Tokyo, pp 183–188

  • Yamane C, Saito M, Okajima K (1996a) Industrial preparation method of cellulose-alkali dope with high solubility. Sen’i Gakkaishi 52–6:310–317

    Article  Google Scholar 

  • Yamane C, Saito M, Okajima K (1996b) Specification of alkali soluble pulp suitable for new cellulosic filament production. Sen’i Gakkaishi 52–6:318–324

    Article  Google Scholar 

  • Yamane C, Saito M, Okajima K (1996c) Spinning of alkali soluble cellulose–caustic soda solution system using sulphuric acid as coagulant. Sen’i Gakkaishi 52–6:369–377

    Article  Google Scholar 

  • Yamane C, Saito M, Okajima K (1996d) New spinning process of cellulose filament production from alkali soluble cellulose dope-net process. Sen’i Gakkaishi 52–6:378–384

    Article  Google Scholar 

  • Yamane C, Abe K, Satho M, Miyamoto H (2015) Dissolution of cellulose nanofibers in aqueous sodium hydroxide solution. Nord Pulp Pap Res J 30:92–98

    Article  CAS  Google Scholar 

  • Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukase H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol l-1) which possess maximum solubility power against cellulose. Polym J 20:447–457

    Article  CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K (1990a) Characterisation of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Br Polym J 22:73–83

    Article  CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K (1990b) Characterisation of cellulose treated by the steam explosion method. Part 2: Effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    Article  CAS  Google Scholar 

  • Yamashiki T, Saitoh M, Yasuda K, Okajima K, Kamide K (1990c) Cellulose fibre spun from gelatinized cellulose/aqueous sodium hydroxide system by the wet-spinning method. Cell Chem Technol 24:237–249

    CAS  Google Scholar 

  • Yamashiki T, Matsui T, Kowsaka K, Saitoh M, Okajima K, Kamide K (1992) New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method. Appl Polym Sci 44:691–698

    Article  CAS  Google Scholar 

  • Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796

    Article  CAS  Google Scholar 

  • Yang G, Zhang L, Han H, Zhou J (2001) Cellulose/casein blend membranes from NaOH/urea solution. J Appl Polym Sci 81:3260–3267

    Article  CAS  Google Scholar 

  • Yang G, Xiong X, Zhang L (2002) Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution. J Membr Sci 201:161–173

    Article  CAS  Google Scholar 

  • Yang G, Miyamoto H, Yamane C, Okajima K (2007) Structure of regenerated cellulose films from cellulose/aqueous NaOH solution as a function of coagulation conditions. Polym J 39:34–40

    Article  CAS  Google Scholar 

  • Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70:2319–2324

    Article  CAS  Google Scholar 

  • Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011a) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 83:1185–1191

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011b) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

  • Yi Z, Jiang Y, Zou W, Duan J, Xiong X (2009) Preparation and characterization of cellulose and konjac glucomannan blend films from ionic liquid. J. Polym Sci Part B Polym Phys 47:1686–1694

    Article  CAS  Google Scholar 

  • Yokota H (1985) The mechanism of cellulose alkalization in the isopropyl alcohol–water–sodium hydroxide–cellulose system. J Appl Sci 30:263–277

    Article  CAS  Google Scholar 

  • Yokota H, Sei T, Horii F, Kitamaru R (1990) 13C CP/MAS NMR study on alkali cellulose. J Appl Polym Sci 41:783–791

    Article  CAS  Google Scholar 

  • Zhang L, Liu H, Yan S, Yang G, Feng H (1997) Interfacial structure and properties of polyurethane/poly(methylacrylate-co-styrene) coating to regenerated cellulose film. J Polym Sci, Part B: Polym Phys 35:2495–2501

    Article  CAS  Google Scholar 

  • Zhang L, Zhou J, Huang J, Gong P, Zhou Q, Zheng L, Du Y (1999) Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks. Ind Eng Chem Res 38:4284–4289

    Article  CAS  Google Scholar 

  • Zhang L, Guo J, Du Y (2002a) Morphology and properties of cellulose/chitin blends membranes from NaOH/thiourea aqueous solution. J Appl Polym Sci 86:2025–2032

    Article  CAS  Google Scholar 

  • Zhang L, Ruan D, Gao S (2002b) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci, Part B: Polym Phys 40:1521–1529

    Article  CAS  Google Scholar 

  • Zhang L, Mao Y, Zhou J, Cai J (2005a) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/urea aqueous solution. Ind Eng Chem Res 44:522–529

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005b) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhang W, Okubayashi S, Bechtold T (2005c) Fibrillation tendency of cellulosic fibres—Part 3. Effects of alkali pretreatment of lyocell fibre. Carbohydr Polym 59:173–179

    Article  CAS  Google Scholar 

  • Zhang S, Li FX, Yu JY (2011) Kinetics of cellulose regeneration from cellulose–NaOH/thiourea/urea/H2O system. Cell Chem Technol 45:593–604

    CAS  Google Scholar 

  • Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea aqueous solution. Polym J 32:866–870

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L (2001) Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. J Polym Sci, Part B: Polym Phys 39:451–458

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci 210:77–90

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L, Cai J (2004a) Behavior of cellulose in NaOH/Urea aqueous solution characterized by light scattering and viscometry. J Polym Sci, Part B: Polym Phys 42:347–353

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L, Zhou J, Guo S (2004b) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650

    Article  CAS  Google Scholar 

  • Zhou J, Zhang L, Deng Q, Wu X (2004c) Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J Polym Sci, Part A: Polym Chem 42:5911–5920

    Article  CAS  Google Scholar 

  • Zhou Q, Zhang L, Li M, Wu X, Cheng G (2005) Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polym Bull 53:243–248

    Article  CAS  Google Scholar 

  • Zhou J, Qin Y, Liu S, Zhang L (2006) Homogenous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution. Macromol Biosci 6:84–89

    Article  CAS  Google Scholar 

  • Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Budtova or Patrick Navard.

Additional information

CEMEF is a member of the European Polysaccharide Network of Excellence (www.epnoe.eu).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budtova, T., Navard, P. Cellulose in NaOH–water based solvents: a review. Cellulose 23, 5–55 (2016). https://doi.org/10.1007/s10570-015-0779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0779-8

Keywords

Navigation