Skip to main content
Log in

Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We describe a simple one-pot mist copolymerization process to fabricate superhydrophobic cotton fabrics. A mixture solution consisting of a free radical initiator, tert-butyl peroxybenzoate (TBPB), and three monomers, lauryl methacrylate (LMA), 2-isocyanatoethyl methacrylate (IEM), and ethylene glycol dimethacrylate (EGD), is atomized to one side of a cotton fabric and polymerized on the surface. SEM images indicate that the copolymer layer on the cotton fiber surface has a randomly wrinkled morphology exhibiting nanoscale roughness. Wetting tests demonstrate that the modified surface possesses a remarkable superhydrophobicity with multiple healing functionalities. A simple ironing treatment at about 200 °C can recover the degraded superhydrophobicity of the modified cotton fabric suffered from 60 cycles of laundries or 2000 cycles of Martindale abrasion. Notably, the mist copolymerization process has no significant impact on the cotton advantages, such as flexibility, water absorptivity, and vapor permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  • Abbas R, Khereby MA, Sadik WA, El Demerdash AGM (2014) Fabrication of durable and cost effective superhydrophobic cotton textiles via simple one step process. Cellulose 22:887–896. doi:10.1007/s10570-014-0514-x

    Article  Google Scholar 

  • Abou-Okeil A, El-Sawy SM, Abdel-Mohdy FA (2013) Flame retardant cotton fabrics treated with organophosphorus polymer. Carbohyd Polym 92:2293–2298. doi:10.1016/j.carbpol.2012.12.008

    Article  CAS  Google Scholar 

  • Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of aloe vera gel-finished cotton fabric. Cellulose 21:2063–2072. doi:10.1007/s10570-014-0175-9

    Article  CAS  Google Scholar 

  • Andou Y, Jeong J-M, Hiki S, Nishida H, Endo T (2009a) Design of nanocomposites by vapor-phase assisted surface polymerization. Macromolecules 42:768–772. doi:10.1021/ma802453n

    Article  CAS  Google Scholar 

  • Andou Y, Jeong J-M, Nishida H, Endo T (2009b) Simple procedure for polystyrene-based nanocomposite preparation by vapor-phase-assisted surface polymerization. Macromolecules 42:7930–7935. doi:10.1021/ma901357p

    Article  CAS  Google Scholar 

  • Chatterjee DP, Mandal BM (2006) Triblock Thermoplastic elastomers with poly(lauryl methacrylate) as the center block and poly(methyl methacrylate) or poly(tert-butyl methacrylate) as end blocks. Morphology and thermomechanical properties. Macromolecules 39:9192–9200. doi:10.1021/ma061391q

    Article  CAS  Google Scholar 

  • Chen F, Zhang D, Yang Q et al (2013) Bioinspired wetting surface via laser microfabrication. ACS Appl Mater Interfaces 5:6777–6792. doi:10.1021/am401677z

    Article  CAS  Google Scholar 

  • Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9:4070–4076. doi:10.1021/acsnano.5b00121

    Article  CAS  Google Scholar 

  • Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54:2328–2338. doi:10.1002/anie.201405785

    Article  CAS  Google Scholar 

  • Conder JM, Hoke RA, Wolf Wd, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003. doi:10.1021/es070895g

    Article  CAS  Google Scholar 

  • Crick CR, Bear JC, Kafizas A, Parkin IP (2012) Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv Mater 24:3505–3508. doi:10.1002/adma.201201239

    Article  CAS  Google Scholar 

  • Darmanin T, De Givenchy ET, Amigoni S, Guittard F (2013) Superhydrophobic surfaces by electrochemical processes. Adv Mater 25:1378–1394. doi:10.1002/adma.201204300

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B 79:5–18. doi:10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  • Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2013) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118. doi:10.1021/cr300195n

    Article  CAS  Google Scholar 

  • Dong C, Gu Y, Zhong M, Li L, Sezer K, Ma M, Liu W (2011) Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching. J Mater Process Technol 211:1234–1240. doi:10.1016/j.jmatprotec.2011.02.007

    Article  CAS  Google Scholar 

  • Dyett BP, Wu AH, Lamb RN (2014) Mechanical stability of surface architecture-consequences for superhydrophobicity. ACS Appl Mater Interfaces 6:18380–18394. doi:10.1021/am505487r

    Article  CAS  Google Scholar 

  • Hua Z, Yang J, Wang T, Liu G, Zhang G (2013) Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity. Langmuir 29:10307–10312. doi:10.1021/la402584v

    Article  CAS  Google Scholar 

  • Hwang HS, Kim NH, Lee SG, Lee DY, Cho K, Park I (2011) Facile fabrication of transparent superhydrophobic surfaces by spray deposition. ACS Appl Mater Interfaces 3:2179–2183. doi:10.1021/am2004575

    Article  CAS  Google Scholar 

  • Isquith A, Slesinski R, Matheson D (1988) Genotoxicity studies on selected organosilicon compounds: in vivo assays. Food Chem Toxicol 26:263–266. doi:10.1016/0278-6915(88)90128-7

    Article  CAS  Google Scholar 

  • Kim TH, Ha SH, Jang NS et al (2015) Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design. ACS Appl Mater Interfaces 7:5289–5295. doi:10.1021/am5086066

    Article  CAS  Google Scholar 

  • Lee W, Park BG, Kim DH, Ahn DJ, Park Y, Lee SH, Lee KB (2010) Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Langmuir 26:1412–1415. doi:10.1021/la904095x

    Article  CAS  Google Scholar 

  • Liu H, Feng L, Zhai J, Jiang L, Zhu D (2004) Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. Langmuir 20:5659–5661. doi:10.1021/la036280o

    Article  CAS  Google Scholar 

  • Liu B, He Y, Fan Y, Wang X (2006) Fabricating super-hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting. Macromol Rapid Commun 27:1859–1864. doi:10.1002/marc.200600492

    Article  CAS  Google Scholar 

  • Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094. doi:10.1021/cr4006796

    Article  CAS  Google Scholar 

  • Miao H, Bao F, Cheng L, Shi W (2010) Cotton fabric modification for imparting high water and oil repellency using perfluoroalkyl phosphate acrylate via γ-ray-induced grafting. Radiat Phys Chem 79:786–790. doi:10.1016/j.radphyschem.2010.01.017

    Article  CAS  Google Scholar 

  • Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912. doi:10.1039/c2ee21848h

    Article  CAS  Google Scholar 

  • Nystrom D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 3594–3596. doi:10.1039/b607411a

  • Ottone C, Lamberti A, Fontana M, Cauda V (2014) Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures. J Electrochem Soc 161:D484–D488. doi:10.1149/2.0431410jes

    Article  CAS  Google Scholar 

  • Periolatto M, Ferrero F, Montarsolo A, Mossotti R (2012) Hydrorepellent finishing of cotton fabrics by chemically modified TEOS based nanosol. Cellulose 20:355–364. doi:10.1007/s10570-012-9821-2

    Article  Google Scholar 

  • Qian B, Shen Z (2005) Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21:9007–9009. doi:10.1021/la051308c

    Article  CAS  Google Scholar 

  • Shateri-Khalilabad M, Yazdanshenas ME (2013) One-pot sonochemical synthesis of superhydrophobic organic–inorganic hybrid coatings on cotton cellulose. Cellulose 20:3039–3051. doi:10.1007/s10570-013-0040-2

    Article  CAS  Google Scholar 

  • Shin B, Lee K-R, Moon MW, Kim HY (2012) Extreme water repellency of nanostructured low-surface-energy non-woven fabrics. Soft Matter 8:1817–1823. doi:10.1039/c1sm06867a

    Article  CAS  Google Scholar 

  • Shirtcliffe NJ, McHale G, Newton MI (2011) The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci Part B Polym Phys 49:1203–1217. doi:10.1002/polb.22286

    Article  CAS  Google Scholar 

  • Sparks BJ, Hoff EF, Xiong L, Goetz JT, Patton DL (2013) Superhydrophobic hybrid inorganic–organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization. ACS Appl Mater Interfaces 5:1811–1817. doi:10.1021/am303165e

    Article  CAS  Google Scholar 

  • Wan SJ, Wang L, Xu XJ, Zhao CH, Liu XD (2014) Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface. Soft Matter 10:903–910. doi:10.1039/C3SM52434E

    Article  CAS  Google Scholar 

  • Wang H, Zhou H, Gestos A, Fang J, Lin T (2013) Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5:10221–10226. doi:10.1021/am4029679

    Article  CAS  Google Scholar 

  • Wang L, Xi GH, Wan SJ, Zhao CH, Liu XD (2014) Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21:2983–2994. doi:10.1007/s10570-014-0275-6

    Article  CAS  Google Scholar 

  • Wang B, Liang W, Guo Z, Liu W (2015a) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361. doi:10.1039/c4cs00220b

    Article  Google Scholar 

  • Wang J-N, Zhang Y-L, Liu Y, Zheng W, Lee LP, Sun H-B (2015b) Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale 7:7101–7114. doi:10.1039/c5nr00719d

    Article  CAS  Google Scholar 

  • Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399. doi:10.1002/anie.201409911

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994. doi:10.1021/ie50320a024

    Article  CAS  Google Scholar 

  • Wolfs M, Darmanin T, Guittard F (2013) Superhydrophobic fibrous polymers. Polym Rev 53:460–505. doi:10.1080/15583724.2013.808666

    Article  CAS  Google Scholar 

  • Xi G, Xiu Y, Wang L, Liu X (2015) Antimicrobial N-halamine coatings synthesized via vapor-phase assisted polymerization. J Appl Polym Sci 132:41824. doi:10.1002/app.41824

    Article  Google Scholar 

  • Xu W, Song J, Sun J, Lu Y, Yu Z (2011) Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces. ACS Appl Mater Interfaces 3:4404–4414. doi:10.1021/am2010527

    Article  CAS  Google Scholar 

  • Xue CH, Guo XJ, Ma JZ, Jia ST (2015) Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS Appl Mater Interfaces 7:8251–8259. doi:10.1021/acsami.5b01426

    Article  CAS  Google Scholar 

  • Yang R, Asatekin A, Gleason KK (2012) Design of conformal, substrate-independent surface modification for controlled proteinadsorption by chemical vapor deposition (CVD). Soft Matter 8:31–43. doi:10.1039/c1sm06334k

    Article  CAS  Google Scholar 

  • Yao T, Wang C, Lin Q et al (2009) Fabrication of flexible superhydrophobic films by lift-up soft-lithography and decoration with Ag nanoparticles. Nanotechnology 20:065304. doi:10.1088/0957-4484/20/6/065304

    Article  Google Scholar 

  • Yu M, Wang Z, Liu H et al (2013) Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO(2) nanoparticles covalently immobilized. ACS Appl Mater Interfaces 5:3697–3703. doi:10.1021/am400304s

    Article  CAS  Google Scholar 

  • Zhang YL, Xia H, Kim E, Sun HB (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231. doi:10.1039/c2sm26517f

    Article  CAS  Google Scholar 

  • Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T (2012) Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv Mater 24:2409–2412. doi:10.1002/adma.201200184

    Article  CAS  Google Scholar 

  • Zou H, Lin S, Tu Y et al (2013) Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer. J Mater Chem A 1:11246–11260. doi:10.1039/c3ta12224g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (51573167), Scientific Research Foundation for the Returned Overseas Chinese Scholars, and State Education Ministry (1101603-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Liu.

Additional information

Guanghui Xi and Jun Wang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 6943 kb)

Supplementary material 2 (AVI 6856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, G., Wang, J., Luo, G. et al. Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose 23, 915–927 (2016). https://doi.org/10.1007/s10570-015-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0773-1

Keywords

Navigation