How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality

Abstract

A wide range of alternative cellulose fibers for the development of new green nanomaterials can be obtained from Brazil’s natural resources. The objective of the work is to evaluate the influence of the chemical composition of hardwoods on the nanofibrillation process and optical quality of nanofiber films. Wood wastes were selected from three native Amazonian species and from exotic planted Eucalyptus grandis species. Wood sawdust was submitted to chemical alkali and bleaching pretreatments. Nanofibers were produced from the bleached fibers after 10, 20, 30 and 40 passes through a Super Mass Colloider grinder, and films were produced by the casting method. Raw sawdust, alkali-treated fibers and bleached fibers were evaluated by the major chemical components, syringyl/guaiacyl ratio, Fourier transformed infrared spectroscopy, oxygen/carbon ratio and scanning electron microscopy. Morphological characteristics of nanofibers and films were analyzed by transmission and scanning electron microscopies. Optical parameters studied for the films were the opacity, total color difference and b value. The main challenge to delignification was attributed to the low syringyl/guaiacyl ratio. The different chemical natures of Amazonian and eucalyptus hardwoods greatly affected pretreatments and, consequently, the nanofibrillation and optical quality of the films. Consequences observed for highly purified cellulose starting fibers are: (1) lower diameters for individual nanofiber elements; (2) fewer opaque and colored films produced from nanofibers; (3) a tendency to stabilization of the nanofibrillation process after 20 passes through the grinder. For species whose chemical nature hindered cellulose purification, the increased number of passes through the grinder continuously decreased the opacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    CAS  Article  Google Scholar 

  2. Barneto AG, Vila C, Ariza J (2011) Eucalyptus kraft pulping production: thermogravimetry monitoring. Thermochimacta 520:110–120. doi:10.1016/j.tca.2011.03.027

    CAS  Article  Google Scholar 

  3. Beukes N (2011) Effect of alkaline pre-treatments on the synergistic enzymatic hydrolysis of sugarcane (Saccharum officinarum) bagasse by Clostridium cellulovorans XynA, ManA and ArfA. Thesis, Rhodes University

  4. Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213. doi:10.1016/j.biortech.2011.01.090

    CAS  Article  Google Scholar 

  5. Brazilian Association for Mechanically Processed Timber (2007) Sector study. http://www.abimci.com.br/wp-content/uploads/2014/02/2007.pdf. Accessed 02 June 2015

  6. Brazilian National Standards Organization (2010a) NBR 14853: determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

    Google Scholar 

  7. Brazilian National Standards Organization (2010b) NBR 7989: pasta celulósica e madeira - determinação de lignina insolúvel em ácido. Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  8. Brazilian Tree Industry (2015) IBA Report 2015. http://www.iba.org/images/shared/iba_2015.pdf. Accessed 29 Sept 2015

  9. Browning BL (1963) The chemistry of wood. Interscience Publisher, Warrenville

    Google Scholar 

  10. Bufalino L, Mendes LM, Tonoli GHD, Rodrigues A, Fonseca AS, Cunha PI, Marconcini JM (2014) New products made with lignocellulosic nanofibers from Brazilian Amazon forest. IOP Conf Ser Mater Sci Eng. doi:10.1088/1757-899X/64/1/012012

    Google Scholar 

  11. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co. KG, Berlin

    Google Scholar 

  12. Dufresne A (2013) Nanocellulose, a new ageless bionanomaterial. Mater Today 16:220–227. doi:10.1016/j.mattod.2013.06.004

    CAS  Article  Google Scholar 

  13. Eichhorn SJ, Dufresne A, Arangurem M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nagakaito AN, Mangalam A, Simonsem J, Benight AS, Bismarck A, Berglund LA, Peijis T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    CAS  Article  Google Scholar 

  14. Gennadios A, Weller CL, Hanna MA, Froning GW (1996) Mechanical properties of egg albumen films. J Food Sci 61:585–589. doi:10.1111/j.1365-2621.1996.tb13164.x

    CAS  Article  Google Scholar 

  15. Ghanbarzadeh B, Almasi H (2011) Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int J Biol Macromol 48:44–49. doi:10.1016/j.ijbiomac.2010.09.014

    CAS  Article  Google Scholar 

  16. Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulosefilms. Innov Food Sci 11:697–702. doi:10.1016/j.ifset.2010.06.001

  17. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc 12:1–18. doi:10.1098/rsif.2012.0341

    Google Scholar 

  18. Guimarães M Jr, Botaro VR, Novack KM, FlauzinoNeto WP, Mendes LM, Tonoli GHD (2015) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:1–18. doi:10.1166/jnn.2015.10854

    Article  Google Scholar 

  19. Guimarães Jr. M, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83. http://www.sciencedirect.com/science/article/pii/S0926669015001892

  20. Gutiérrez A, Rodríguez IM, Del Rio JC (2006) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54:2138–2144. doi:10.1021/jf052935a

    Article  Google Scholar 

  21. Hietanen TM, Österberg M, Backfolk KA (2013) Effects on pulp properties of magnesium hydroxide in peroxide bleaching. Bioresource 8:2338–2350

    Article  Google Scholar 

  22. Ioelovich M (2008) Cellulose as nanostructured polymer: short review. Bioresource 3:1403–1418

    Google Scholar 

  23. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    CAS  Article  Google Scholar 

  24. Ji X, Chen J, Wang O, Tian Z, Yang G, Liu S (2015) Boosting oxygen delignification of poplar kraft pulp by xylanase pretreatment. Bioresource 10:2518–2525

    CAS  Google Scholar 

  25. Kennedy F, Phillips GO, Williams EPA (1987) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood, Chichester

    Google Scholar 

  26. Khanzadi M, Jafari SM, Mirzaei H, Chegini FK, Maghsoudlou Y, Dehnad D (2015) Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydr Polym 15(118):24–29. doi:10.1016/j.carbpol.2014.11.015

    Article  Google Scholar 

  27. Leite ERS, Protásio TP, Rosado SCS, Trugilho PF, Tonoli GHD, Bufalino L (2014) Evaluation of Coffea arabica L. wood quality as a source of bioenergy. Cerne 20:541–549. doi:10.1590/01047760201420041282

    Article  Google Scholar 

  28. Lepikson-Neto J, Alves AMM, Simões RF, Deckmann AC, Camargo EDO, Salazar MM, Rio MCS, Nascimento LC, Pereira GAG, Rodrigues JC (2013) Flavonoid supplementation reduces the extractive content and increases the syringyl/guaiacyl ratio in Eucalyptus grandis x Eucalyptus urophylla hybrid trees. Bioresource 8:1747–1757

    Article  Google Scholar 

  29. Lima CF, Barbosa LCA, Marcelo CR, Silvério FO, Colodette JL (2008) Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ration in Eucalyptus spp. lignin. Bioresource 3:701–712

    CAS  Google Scholar 

  30. Lima NN, Mendes LM, Sá VA, Bufalino L (2013) Mechanical and physical properties of LVL panels made from three amazonic species. Cerne 19:407–413

    Article  Google Scholar 

  31. Lin SN, Dence CW (1992) Methods in lignin chemistry. Springer, Berlin

    Google Scholar 

  32. Liu Y, Chen K, Lin B (2014) The use of Mg(OH)2 in the final peroxide bleaching stage of wheat straw pulp. Bioresource 9:161–170

    CAS  Google Scholar 

  33. López F, Díaz MJ, Eugenio ME, Ariza J, Rodríguez A, Jiménez L (2003) Optimization of hydrogen peroxide in totally chlorine free bleaching of cellulose pulp from olive tree residues. Bioresour Technol 87:255–261. doi:10.1016/S0960-8524(02)00239-0

    Article  Google Scholar 

  34. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    CAS  Article  Google Scholar 

  35. Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. doi:10.1016/j.carbpol.2014.10.007

    CAS  Article  Google Scholar 

  36. National Environment Council—CONAMA (2009). file: https://www.google.com.br/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=Brazilian+national+council+of+the+environment+conama. Accessed 18 Aug 2015

  37. Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181:379–386. doi:10.1016/j.plantsci.2011.06.012

    CAS  Article  Google Scholar 

  38. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. doi:10.1002/adma.200803174

    CAS  Article  Google Scholar 

  39. Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silvério FO (2010) Determination of Eucalyptus spp. lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056–4061. doi:10.1016/j.biortech.2010.01.012

    CAS  Article  Google Scholar 

  40. Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:256–272. doi:10.1016/j.biortech.2005.02.043

    Article  Google Scholar 

  41. Paschoalick TM, Garcia FT, Sobral PJA, Habitante AMQB (2003) Characterization of some functional properties of edible films based on muscle proteins of Nile tilapia. Food Hydrocoll 17:419–427. doi:10.1016/S0268-005X(03)00031-6

    CAS  Article  Google Scholar 

  42. Protásio TP, Guimarães Neto RM, Santana JDP, Guimarães JB Jr, Trugilho PF (2014) Canonical correlation analysis of the characteristics of charcoal from Qualea parviflora Mart. Cerne 20:81–88. doi:10.1590/S0104-77602014000100011

    Article  Google Scholar 

  43. Rezende GDSP, Deon M, Resende V, Assis TF (2014) Eucalyptus breeding for clonal forestry. For Sci 81:393–424. doi:10.1007/978-94-007-7076-8_16

    Google Scholar 

  44. Rosa MF, Mereiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. doi:10.1016/j.carbpol.2010.01.059

    CAS  Article  Google Scholar 

  45. Saito T, Kimura S, Nishiyama Y, Iasogai A (2007) Cellulose nanofibers prepared by TEMPO-mediatedoxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    CAS  Article  Google Scholar 

  46. Sakagami H, Kushida T, Oizumi T, Nakashima H, Makino T (2010) Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol Ther 128:91–105. doi:10.1016/j.pharmthera.2010.05.004

    CAS  Article  Google Scholar 

  47. Sena Neto AR, Araujo MAM, Souza FVD, Mattoso LHC, Marconcini JM (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crop Prod 43:529–537. doi:10.1016/j.indcrop.2012.08.001

    CAS  Article  Google Scholar 

  48. Silverstein RM, Webster FX, Kiemle DJ (2000) Identificação espectrométrica de compostos orgânicos. LTC, Rio de Janeiro

    Google Scholar 

  49. Siró I, Plackett D (2010) Microfibrillated cellulose and new composite materials: a review. Cellulose 17:459–464. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  50. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. doi:10.1007/s10570-011-9533-z

    CAS  Article  Google Scholar 

  51. Su J, Yuan X, Huang Z, Wang X, Lu X, Zhang L, Wang S (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater Sci Eng C 32:40–46. doi:10.1016/j.msec.2011.09.009

    Article  Google Scholar 

  52. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106. doi:10.1016/j.carres.2004.10.022

    CAS  Article  Google Scholar 

  53. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–86. doi:10.1007/s10570-008-9244-2

    CAS  Article  Google Scholar 

  54. Syverud K, Chinga-Carrascoa G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038. doi:10.1016/j.carbpol.2010.12.066

    CAS  Article  Google Scholar 

  55. Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88. doi:10.1016/j.carbpol.2012.02.052

    CAS  Article  Google Scholar 

  56. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi:10.1104/pp.110.155119

    CAS  Article  Google Scholar 

  57. Zhu H, Fang Z, Preston C, Li Y, Hu L (2012) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287. doi:10.1039/C3EE43024C

    Article  Google Scholar 

  58. Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792. doi:10.1039/C3NR00520H

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Coordination for the Improvement of Higher Level Personnel (CAPES), Minas Gerais State Research Foundation (Fapemig), National Council for Scientific and Technological Development (CNPq), Brazilian Research Network in Lignocellulosic Composites and Nanocomposites (RELIGAR), Federal University of Viçosa (UFV), Brazilian Agricultural Research Corp. (EMBRAPA) and Cikel Brasil Verde Co.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lina Bufalino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bufalino, L., de Sena Neto, A.R., Tonoli, G.H.D. et al. How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22, 3657–3672 (2015). https://doi.org/10.1007/s10570-015-0771-3

Download citation

Keywords

  • Cellulose
  • Wood fibers
  • Nanofibers
  • Microfibrils
  • Grinder
  • Lignocellulosic