Skip to main content
Log in

How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A wide range of alternative cellulose fibers for the development of new green nanomaterials can be obtained from Brazil’s natural resources. The objective of the work is to evaluate the influence of the chemical composition of hardwoods on the nanofibrillation process and optical quality of nanofiber films. Wood wastes were selected from three native Amazonian species and from exotic planted Eucalyptus grandis species. Wood sawdust was submitted to chemical alkali and bleaching pretreatments. Nanofibers were produced from the bleached fibers after 10, 20, 30 and 40 passes through a Super Mass Colloider grinder, and films were produced by the casting method. Raw sawdust, alkali-treated fibers and bleached fibers were evaluated by the major chemical components, syringyl/guaiacyl ratio, Fourier transformed infrared spectroscopy, oxygen/carbon ratio and scanning electron microscopy. Morphological characteristics of nanofibers and films were analyzed by transmission and scanning electron microscopies. Optical parameters studied for the films were the opacity, total color difference and b value. The main challenge to delignification was attributed to the low syringyl/guaiacyl ratio. The different chemical natures of Amazonian and eucalyptus hardwoods greatly affected pretreatments and, consequently, the nanofibrillation and optical quality of the films. Consequences observed for highly purified cellulose starting fibers are: (1) lower diameters for individual nanofiber elements; (2) fewer opaque and colored films produced from nanofibers; (3) a tendency to stabilization of the nanofibrillation process after 20 passes through the grinder. For species whose chemical nature hindered cellulose purification, the increased number of passes through the grinder continuously decreased the opacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  • Barneto AG, Vila C, Ariza J (2011) Eucalyptus kraft pulping production: thermogravimetry monitoring. Thermochimacta 520:110–120. doi:10.1016/j.tca.2011.03.027

    Article  CAS  Google Scholar 

  • Beukes N (2011) Effect of alkaline pre-treatments on the synergistic enzymatic hydrolysis of sugarcane (Saccharum officinarum) bagasse by Clostridium cellulovorans XynA, ManA and ArfA. Thesis, Rhodes University

  • Beukes N, Pletschke BI (2011) Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresour Technol 102:5207–5213. doi:10.1016/j.biortech.2011.01.090

    Article  CAS  Google Scholar 

  • Brazilian Association for Mechanically Processed Timber (2007) Sector study. http://www.abimci.com.br/wp-content/uploads/2014/02/2007.pdf. Accessed 02 June 2015

  • Brazilian National Standards Organization (2010a) NBR 14853: determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

    Google Scholar 

  • Brazilian National Standards Organization (2010b) NBR 7989: pasta celulósica e madeira - determinação de lignina insolúvel em ácido. Associação Brasileira de Normas Técnicas, Rio de Janeiro

    Google Scholar 

  • Brazilian Tree Industry (2015) IBA Report 2015. http://www.iba.org/images/shared/iba_2015.pdf. Accessed 29 Sept 2015

  • Browning BL (1963) The chemistry of wood. Interscience Publisher, Warrenville

    Google Scholar 

  • Bufalino L, Mendes LM, Tonoli GHD, Rodrigues A, Fonseca AS, Cunha PI, Marconcini JM (2014) New products made with lignocellulosic nanofibers from Brazilian Amazon forest. IOP Conf Ser Mater Sci Eng. doi:10.1088/1757-899X/64/1/012012

    Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co. KG, Berlin

    Book  Google Scholar 

  • Dufresne A (2013) Nanocellulose, a new ageless bionanomaterial. Mater Today 16:220–227. doi:10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Arangurem M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nagakaito AN, Mangalam A, Simonsem J, Benight AS, Bismarck A, Berglund LA, Peijis T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Gennadios A, Weller CL, Hanna MA, Froning GW (1996) Mechanical properties of egg albumen films. J Food Sci 61:585–589. doi:10.1111/j.1365-2621.1996.tb13164.x

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Almasi H (2011) Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int J Biol Macromol 48:44–49. doi:10.1016/j.ijbiomac.2010.09.014

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Almasi H, Entezami AA (2010) Physical properties of edible modified starch/carboxymethyl cellulosefilms. Innov Food Sci 11:697–702. doi:10.1016/j.ifset.2010.06.001

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc 12:1–18. doi:10.1098/rsif.2012.0341

    Google Scholar 

  • Guimarães M Jr, Botaro VR, Novack KM, FlauzinoNeto WP, Mendes LM, Tonoli GHD (2015) Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. J Nanosci Nanotechnol 15:1–18. doi:10.1166/jnn.2015.10854

    Article  Google Scholar 

  • Guimarães Jr. M, Botaro VR, Novack KM, Teixeira FG, Tonoli GHD (2015b) Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind Crop Prod 70:72–83. http://www.sciencedirect.com/science/article/pii/S0926669015001892

  • Gutiérrez A, Rodríguez IM, Del Rio JC (2006) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54:2138–2144. doi:10.1021/jf052935a

    Article  Google Scholar 

  • Hietanen TM, Österberg M, Backfolk KA (2013) Effects on pulp properties of magnesium hydroxide in peroxide bleaching. Bioresource 8:2338–2350

    Article  Google Scholar 

  • Ioelovich M (2008) Cellulose as nanostructured polymer: short review. Bioresource 3:1403–1418

    Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026. doi:10.1021/bm701157n

    Article  CAS  Google Scholar 

  • Ji X, Chen J, Wang O, Tian Z, Yang G, Liu S (2015) Boosting oxygen delignification of poplar kraft pulp by xylanase pretreatment. Bioresource 10:2518–2525

    CAS  Google Scholar 

  • Kennedy F, Phillips GO, Williams EPA (1987) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood, Chichester

    Google Scholar 

  • Khanzadi M, Jafari SM, Mirzaei H, Chegini FK, Maghsoudlou Y, Dehnad D (2015) Physical and mechanical properties in biodegradable films of whey protein concentrate–pullulan by application of beeswax. Carbohydr Polym 15(118):24–29. doi:10.1016/j.carbpol.2014.11.015

    Article  Google Scholar 

  • Leite ERS, Protásio TP, Rosado SCS, Trugilho PF, Tonoli GHD, Bufalino L (2014) Evaluation of Coffea arabica L. wood quality as a source of bioenergy. Cerne 20:541–549. doi:10.1590/01047760201420041282

    Article  Google Scholar 

  • Lepikson-Neto J, Alves AMM, Simões RF, Deckmann AC, Camargo EDO, Salazar MM, Rio MCS, Nascimento LC, Pereira GAG, Rodrigues JC (2013) Flavonoid supplementation reduces the extractive content and increases the syringyl/guaiacyl ratio in Eucalyptus grandis x Eucalyptus urophylla hybrid trees. Bioresource 8:1747–1757

    Article  Google Scholar 

  • Lima CF, Barbosa LCA, Marcelo CR, Silvério FO, Colodette JL (2008) Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ration in Eucalyptus spp. lignin. Bioresource 3:701–712

    CAS  Google Scholar 

  • Lima NN, Mendes LM, Sá VA, Bufalino L (2013) Mechanical and physical properties of LVL panels made from three amazonic species. Cerne 19:407–413

    Article  Google Scholar 

  • Lin SN, Dence CW (1992) Methods in lignin chemistry. Springer, Berlin

    Book  Google Scholar 

  • Liu Y, Chen K, Lin B (2014) The use of Mg(OH)2 in the final peroxide bleaching stage of wheat straw pulp. Bioresource 9:161–170

    CAS  Google Scholar 

  • López F, Díaz MJ, Eugenio ME, Ariza J, Rodríguez A, Jiménez L (2003) Optimization of hydrogen peroxide in totally chlorine free bleaching of cellulose pulp from olive tree residues. Bioresour Technol 87:255–261. doi:10.1016/S0960-8524(02)00239-0

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. doi:10.1016/j.carbpol.2014.10.007

    Article  CAS  Google Scholar 

  • National Environment Council—CONAMA (2009). file: https://www.google.com.br/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=Brazilian+national+council+of+the+environment+conama. Accessed 18 Aug 2015

  • Neutelings G (2011) Lignin variability in plant cell walls: contribution of new models. Plant Sci 181:379–386. doi:10.1016/j.plantsci.2011.06.012

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. doi:10.1002/adma.200803174

    Article  CAS  Google Scholar 

  • Nunes CA, Lima CF, Barbosa LCA, Colodette JL, Gouveia AFG, Silvério FO (2010) Determination of Eucalyptus spp. lignin S/G ratio: a comparison between methods. Bioresour Technol 101:4056–4061. doi:10.1016/j.biortech.2010.01.012

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Zereshkian A, Sain M (2006) Preparation and characterization of wheat straw fibers for reinforcing application in injection molded thermoplastic composites. Bioresour Technol 97:256–272. doi:10.1016/j.biortech.2005.02.043

    Article  Google Scholar 

  • Paschoalick TM, Garcia FT, Sobral PJA, Habitante AMQB (2003) Characterization of some functional properties of edible films based on muscle proteins of Nile tilapia. Food Hydrocoll 17:419–427. doi:10.1016/S0268-005X(03)00031-6

    Article  CAS  Google Scholar 

  • Protásio TP, Guimarães Neto RM, Santana JDP, Guimarães JB Jr, Trugilho PF (2014) Canonical correlation analysis of the characteristics of charcoal from Qualea parviflora Mart. Cerne 20:81–88. doi:10.1590/S0104-77602014000100011

    Article  Google Scholar 

  • Rezende GDSP, Deon M, Resende V, Assis TF (2014) Eucalyptus breeding for clonal forestry. For Sci 81:393–424. doi:10.1007/978-94-007-7076-8_16

    Google Scholar 

  • Rosa MF, Mereiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92. doi:10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Iasogai A (2007) Cellulose nanofibers prepared by TEMPO-mediatedoxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Sakagami H, Kushida T, Oizumi T, Nakashima H, Makino T (2010) Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol Ther 128:91–105. doi:10.1016/j.pharmthera.2010.05.004

    Article  CAS  Google Scholar 

  • Sena Neto AR, Araujo MAM, Souza FVD, Mattoso LHC, Marconcini JM (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crop Prod 43:529–537. doi:10.1016/j.indcrop.2012.08.001

    Article  CAS  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2000) Identificação espectrométrica de compostos orgânicos. LTC, Rio de Janeiro

    Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new composite materials: a review. Cellulose 17:459–464. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. doi:10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  • Su J, Yuan X, Huang Z, Wang X, Lu X, Zhang L, Wang S (2012) Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater Sci Eng C 32:40–46. doi:10.1016/j.msec.2011.09.009

    Article  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106. doi:10.1016/j.carres.2004.10.022

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–86. doi:10.1007/s10570-008-9244-2

    Article  CAS  Google Scholar 

  • Syverud K, Chinga-Carrascoa G, Toledo J, Toledo PG (2011) A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84:1033–1038. doi:10.1016/j.carbpol.2010.12.066

    Article  CAS  Google Scholar 

  • Tonoli GHD, Teixeira EM, Correa AC, Marconcini JM, Caixeta LA, Pereira-da-Silva MA, Mattoso LHC (2012) Cellulose micro/nanofibers from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88. doi:10.1016/j.carbpol.2012.02.052

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi:10.1104/pp.110.155119

    Article  CAS  Google Scholar 

  • Zhu H, Fang Z, Preston C, Li Y, Hu L (2012) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7:269–287. doi:10.1039/C3EE43024C

    Article  Google Scholar 

  • Zhu H, Parvinian S, Preston C, Vaaland O, Ruan Z, Hu L (2013) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792. doi:10.1039/C3NR00520H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Coordination for the Improvement of Higher Level Personnel (CAPES), Minas Gerais State Research Foundation (Fapemig), National Council for Scientific and Technological Development (CNPq), Brazilian Research Network in Lignocellulosic Composites and Nanocomposites (RELIGAR), Federal University of Viçosa (UFV), Brazilian Agricultural Research Corp. (EMBRAPA) and Cikel Brasil Verde Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Bufalino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufalino, L., de Sena Neto, A.R., Tonoli, G.H.D. et al. How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose 22, 3657–3672 (2015). https://doi.org/10.1007/s10570-015-0771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0771-3

Keywords

Navigation