Skip to main content
Log in

Molecular dynamics simulation of dehydration in cellulose/water crystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It is well known that there are two crystal types for a cellulose/water complex: Na–cellulose IV and cellulose II hydrate. The water molecules in these crystals are released with increasing temperature and the hydrated models are then transformed into cellulose II crystals. Dehydration can be observed even when the cellulose/water crystal is soaked in water. In this study, we investigated the dehydration process in Na–cellulose IV and cellulose II hydrate using molecular dynamics simulations. In both crystals, as simulation time progressed, the water molecules were gradually released from the crystal while forming hydrogen bonds with the hydroxyl groups of cellulose. Interestingly, water molecules were released from the spaces between the molecular sheets formed by hydrophobic interactions. All hydroxyl groups existed on the surface of the molecular sheets. Therefore, it is reasonable to suggest that water molecules pass between the sheets. For Na–cellulose IV, the ratio of gt conformations was high. In addition, it was observed that water molecules were in the space between O6 and O3 on each adjacent molecular sheet forming hydrogen bonds during simulation. On the other hand, the gg conformations were mainly observed in cellulose II hydrate probably because of the presence of the O6···O6 intermolecular hydrogen bond. During the simulation, the water molecules were present in the space between O2 and O3 while forming hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford Science, Oxford

    Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TPJ (1987) The missing term in effective pair potentialst. Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  • Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-induced forces between two hydrophilic groups. J Chem Phys 98:2198–2202

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth TV, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:1195–1203

    Article  Google Scholar 

  • Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, MacKerell AD Jr (2008) Additive empirical force field for hexopyranose monosaccharides. J Comp Chem 29(15):2543–2564

    Article  CAS  Google Scholar 

  • Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5(9):2353–2370

    Article  CAS  Google Scholar 

  • Hayashi J, Masuda S, Watanabe S (1974) Plane lattice structure in amorphous region of cellulose fibers. J Chem Soc Jap Chem Ind Chem (Nippon Kagaku Kaishi) 5:948–954

    Google Scholar 

  • Hermans PH (1949) Degree of lateral order in various rayons as deduced from X-ray measurements. J Polym Sci 4:145–151

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. J Appl Phys 19:491–506

    Article  CAS  Google Scholar 

  • Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23:1513–1518

    Article  CAS  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose conformation of CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89:1298–1300

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kobayashi K, Kimura S, Togawa E, Wada M (2011a) Crystal transition from Na–cellulose IV to cellulose II monitored using synchrotron X-ray diffraction. Carbohydr Polym 83:483–488

    Article  CAS  Google Scholar 

  • Kobayashi K, Kimura S, Togawa E, Wada M (2011b) Crystal transition from cellulose II hydrate to cellulose II. Carbohydr Polym 86:975–981

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416

    Article  CAS  Google Scholar 

  • Lee DM, Blackwell J (1981a) Structure of cellulose II hydrate. Biopolymers 20:2165–2179

    Article  CAS  Google Scholar 

  • Lee DM, Blackwell J (1981b) Cellulose-hydrazine complexes. J Polym Sci 19:459–465

    CAS  Google Scholar 

  • Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

  • Mason PE, Brady JW (2007) “Tetrahedrality” and the relationship between collective structure and radial distribution functions in liquid water. J Phys Chem B 111:5669–5679

    Article  CAS  Google Scholar 

  • Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166

    Article  CAS  Google Scholar 

  • Matthews JF, Himmel ME, Crowley MF (2012) Conversion of cellulose Ia to Ib via a high temperature intermediate (I-HT) and other cellulose phase transformations. Cellulose 19:297–306

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2014a) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid and Interface Sci. doi:10.1016/j.cis.2014.05.004

    Google Scholar 

  • Medronho B, Lindman B (2014b) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Mills RJ (1973) Self-diffusion in normal and heavy water in the range 1-45º. Phys Chem 77:685–688

    Article  CAS  Google Scholar 

  • Miyamoto H, Umemura M, Aoyagi T, Yamane C, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094

    Article  CAS  Google Scholar 

  • Miyamoto H, Abdullah R, Tokimura H, Hayakawa D, Ueda K, Saka S (2014) Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water. Cellulose 21:3203–3215

    Article  CAS  Google Scholar 

  • Narten AH, Levy HA (1969) Observed diffraction pattern and proposed models of liquid water. Science 165:447–454

    Article  CAS  Google Scholar 

  • Narten AH, Levy HA (1971) Liquid water: molecular correlation functions from X-ray diffraction. J Chem Phys 55:2263–2269

    Article  CAS  Google Scholar 

  • Narten AH, Danford MD, Levy HA (1967) X-ray diffraction study of liquid water in the temperature range 4-20°C. Discuss Faraday Soc 43:97–107

    Article  Google Scholar 

  • Newman RH, Hill SJ, Harris PJ (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163:1558–1567

    Article  CAS  Google Scholar 

  • Nishimura H, Sarko A (1991) Mercerization of cellulose. 6. Crystal and molecular structure of Na–cellulose IV. Macromolecules 24:771–778

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerization of cellulose: I. X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Porro F, Bédué O, Chanzy H, Heux L (2007) Solid-state 13C NMR study of Na–cellulose complexes. Biomacromolecules 8:2586–2593

    Article  CAS  Google Scholar 

  • Price WS, Ide H, Arata YJ (1999) Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements. Phys Chem A 103(4):448–450

    Article  CAS  Google Scholar 

  • Sakurada I, Hutino K (1936) Über die intramizellare quellung der zellulose durch wasser. kolloid-zeitschrift 77:346–351

    Article  CAS  Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34(5):1311–1327

    Article  Google Scholar 

  • Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylenediamine by X-ray crystallography and cross-polarization/magic angle spinning 13C nuclear magnetic resonance. Cellulose 16:943–957

    Article  CAS  Google Scholar 

  • Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206

    Article  CAS  Google Scholar 

  • Yamane C, Aoyagi T, Ago M, Sato K, Okajima K, Takahashi T (2006) Two different surface properties of regenerated cellulose due to structural anisotropy. Polym J 38:819–826

Download references

Acknowledgments

This work was supported by Grant-in-Aid from Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitomi Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, H., Yamane, C. & Ueda, K. Molecular dynamics simulation of dehydration in cellulose/water crystals. Cellulose 22, 2899–2910 (2015). https://doi.org/10.1007/s10570-015-0716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0716-x

Keywords

Navigation