, Volume 22, Issue 5, pp 3291–3304 | Cite as

Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes

  • Hubert Hettegger
  • Markus Gorfer
  • Salvatore Sortino
  • Aurore Fraix
  • Dragana Bandian
  • Christian Rohrer
  • Wolfgang Harreither
  • Antje Potthast
  • Thomas Rosenau
Original Paper


We report on the functionalization of wet bacterial cellulose sheets towards photo-bactericidal materials that produce singlet oxygen (1O2) upon illumination. Pre-modification was carried out by a silane chemistry approach in order to make the cellulosic material accessible to Cu(I)-catalyzed azide-alkyne click chemistry. This way, two xanthene-derived photosensitizers were covalently grafted onto the surface of the silanized bacterial cellulose sheets. The obtained materials and photosensitizers were comprehensively characterized by means of FTIR, NMR, elemental analysis, UV/Vis absorption and fluorescence techniques, including nanosecond laser flash photolysis, for the determination of respective triplet state and singlet oxygen quantum yields. The photomicrobicidal activity was tested under white light illumination against gram-negative as well as gram-positive bacteria, including Escherichia coli, Bacillus subtilis and Staphylococcus aureus, as well as fungi (Candida albicans and Aspergillus brasiliensis). The results show type II photochemical antimicrobial activity against S. aureus and B. subtilis, but no effect against gram-negative bacteria and fungi.


Bacterial cellulose Click chemistry Photocatalysis Singlet oxygen Xanthene dye 



Bacterial cellulose











The financial support by the Christian Doppler Research Society through the CD-laboratory for “Advanced Cellulose Chemistry and Analytics” and its partner companies is gratefully acknowledged. Lohmann & Rauscher GmbH is additionally acknowledged for providing bacterial cellulose sheets. Dr. Markus Bacher is acknowledged for recording the NMR spectra. We also thank the Marie Curie Program #608407 CYCLON-HIT (FP7-PEOPLE-ITN-2013) as well as the COST Action FP1205 (short-term scientific mission of H.H.).


  1. Alhajjar RK, Marraiki NAY, Abdel Moaty EA (2014) Comparative study of antimicrobial activities of twotype of TiO2 nanoparticles against the pathogenic strain of Escherichia coli. Life Sci J 11:982–989Google Scholar
  2. Andresen M, Stenstad P, Moretro T, Langsrud S, Syverud K, Johansson L-S, Stenius P (2007) Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8:2149–2155. doi: 10.1021/bm070304e CrossRefGoogle Scholar
  3. Arkles B, Steinmetz JR, Zazyczny J, Mehta P (1992) Factors contributing to the stability of alkoxysilanes in aqueous solution. J Adhes Sci Technol 6:193–206. doi: 10.1163/156856192x00133 CrossRefGoogle Scholar
  4. Beghetto C, Renken C, Eriksson O, Jori G, Bernardi P, Ricchelli F (2000) Implications of the generation of reactive oxygen species by photoactivated calcein for mitochondrial studies. Eur J Biochem 267:5585–5592. doi: 10.1046/j.1432-1327.2000.01625.x CrossRefGoogle Scholar
  5. Cao Y, Koo Y-EL, Koo SM, Kopelman R (2005) Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms. Photochem Photobiol 81:1489–1498. doi: 10.1562/2005-05-18-ra-532 CrossRefGoogle Scholar
  6. Chen S-L, Huang X-J, Xu Z-K (2012) Effect of a spacer on phthalocyanine functionalized cellulose nanofiber mats for decolorizing reactive dye wastewater. Cellulose 19:1351–1359. doi: 10.1007/s10570-012-9701-9 CrossRefGoogle Scholar
  7. Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397. doi: 10.1016/j.foodcont.2013.04.042 CrossRefGoogle Scholar
  8. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18. doi: 10.1016/j.colsurfb.2010.03.029 CrossRefGoogle Scholar
  9. Decraene V, Pratten J, Wilson M (2006) Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light. Appl Environ Microbiol 72:4436–4439. doi: 10.1128/aem.02945-05 CrossRefGoogle Scholar
  10. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371. doi: 10.1016/s0010-8545(02)00034-6 CrossRefGoogle Scholar
  11. Eisenberg WC, Taylor K, Murray RW (1986) Gas-phase kinetics of the reaction of singlet oxygen with olefins at atmospheric pressure. J Phys Chem 90:1945–1948. doi: 10.1021/j100400a041 CrossRefGoogle Scholar
  12. Elchinger P-H, Faugeras P-A, Boens B, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2011) Polysaccharides: the “click” chemistry impact. Polymers 3:1607–1651. doi: 10.3390/polym3041607 CrossRefGoogle Scholar
  13. Encinas MV, Lemp E, Lissi EA (1987) Interaction of singlet oxygen [O2(1Δ)] with aliphatic amines and hydroxylamines. J Chem Soc Perkin Trans 2:1125–1127CrossRefGoogle Scholar
  14. Fall A, Sene M, Diouf O, Gaye M, Gomez G, Fall Y (2012) Synthesis and use of imidazolium-bound Rose Bengal derivatives for singlet oxygen generation. Open Org Chem J 6:21–26. doi: 10.2174/1874095201206010021 CrossRefGoogle Scholar
  15. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539. doi: 10.1021/bm200718s CrossRefGoogle Scholar
  16. Fernandes SCM et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. doi: 10.1021/am400338n CrossRefGoogle Scholar
  17. Fleck CA (2006) Palliative Dilemmas: Wound Odour Wound Care Canada 4:10-13Google Scholar
  18. Garcia G, Naud-Martin D, Carrez D, Croisy A, Maillard P (2011) Microwave-mediated click-chemistry’’ synthesis of glyco-porphyrin derivatives and in vitro photo-cytotoxicity for application in photodynamic therapy. Tetrahedron 67:4924–4932. doi: 10.1016/j.tet.2011.04.080 CrossRefGoogle Scholar
  19. Hajimohammadi M, Safari N, Mofakham H, Shaabani A (2010) A new and efficient aerobic oxidation of aldehydes to carboxylic acids with singlet oxygen in the presence of porphyrin sensitizers and visible light. Tetrahedron Lett 51:4061–4065. doi: 10.1016/j.tetlet.2010.05.124 CrossRefGoogle Scholar
  20. Hettegger H, Kohout M, Mimini V, Lindner W (2014) Novel carbamoyl type quinine and quinidine based chiral anion exchangers implementing alkyne-azide cycloaddition immobilization chemistry. J Chromatogr A 1337:85–94. doi: 10.1016/j.chroma.2014.02.026 CrossRefGoogle Scholar
  21. Hettegger H, Sumerskii I, Sortino S, Potthast A, Rosenau T (2015) Silane meets click chemistry: towards the functionalization of wet bacterial cellulose sheets. ChemSusChem 8:680–687. doi: 10.1002/cssc.201402991 CrossRefGoogle Scholar
  22. Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166Google Scholar
  23. Kosma P (2004) Bacterial polysaccharides: structure and biological activity. In Verein ZELLCHEMING, pp 185–194Google Scholar
  24. Krouit M, Granet R, Branland P, Verneuil B, Krausz P (2006) New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorg Med Chem Lett 16:1651–1655. doi: 10.1016/j.bmcl.2005.12.008 CrossRefGoogle Scholar
  25. Krouit M, Bras J, Belgacem MN (2008a) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polym J 44:4074–4081. doi: 10.1016/j.eurpolymj.2008.09.016 CrossRefGoogle Scholar
  26. Krouit M, Granet R, Krausz P (2008b) Photobactericidal plastic films based on cellulose esterified by chloroacetate and a cationic porphyrin. Bioorg Med Chem 16:10091–10097. doi: 10.1016/j.bmc.2008.10.010 CrossRefGoogle Scholar
  27. Krouit M, Granet R, Krausz P (2009) Photobactericidal films from porphyrins grafted to alkylated cellulose: synthesis and bactericidal properties. Eur Polym J 45:1250–1259. doi: 10.1016/j.eurpolymj.2008.11.036 CrossRefGoogle Scholar
  28. Kushnir VN, Volyanskii YL, Shevchuk MI (1980) Synthesis and study of the antimicrobial activity of phosphonium salts and ilides containing trichloroethylamide fragments. Khim-Farm Zh 14:45–49Google Scholar
  29. Kushwaha D, Dwivedi P, Kuanar SK, Tiwari VK (2013) Click reaction in carbohydrate chemistry: recent developments and future perspective. Curr Org Synth 10:90–135. doi: 10.2174/1570179411310010005 CrossRefGoogle Scholar
  30. Lenselink E, Andriessen A (2011) A cohort study on the efficacy of a polyhexanide-containing biocellulose dressing in the treatment of biofilms in wounds. J Wound Care 20(534):536–539Google Scholar
  31. Lipovsky A, Nitzan Y, Friedmann H, Lubart R (2009) Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem Photobiol 85:255–260. doi: 10.1111/j.1751-1097.2008.00429.x CrossRefGoogle Scholar
  32. Liu J-Y, Lo P-C, Jiang X-J, Fong W-P, Ng DKP (2009) Synthesis and in vitro photodynamic activities of di-α-substituted zinc(II) phthalocyanine derivatives. Dalton Trans 21:4129–4135. doi: 10.1039/b817940a CrossRefGoogle Scholar
  33. Lu C, Song G, Lin J-M (2006) Reactive oxygen species and their chemiluminescence-detection methods TrAC. Trends Anal Chem 25:985–995. doi: 10.1016/j.trac.2006.07.007 CrossRefGoogle Scholar
  34. Mbakidi J-P et al (2013) Synthesis and photobiocidal properties of cationic porphyrin-grafted paper. Carbohydr Polym 91:333–338. doi: 10.1016/j.carbpol.2012.08.013 CrossRefGoogle Scholar
  35. Mueller A, Ni Z, Hessler N, Wesarg F, Muller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592. doi: 10.1002/jps.23385 CrossRefGoogle Scholar
  36. Pinto RJB, Marques PAAP, Pascoal NC, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289. doi: 10.1016/j.actbio.2009.02.003 CrossRefGoogle Scholar
  37. Qin X, Li Y, Zhou F, Ren L, Zhao Y, Yuan X (2015) Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating. Appl Surf Sci 328:183–192. doi: 10.1016/j.apsusc.2014.12.019 CrossRefGoogle Scholar
  38. Ringot C, Sol V, Granet R, Krausz P (2009) Porphyrin-grafted cellulose fabric: new photobactericidal material obtained by “click-chemistry” reaction. Mater Lett 63:1889–1891. doi: 10.1016/j.matlet.2009.06.009 CrossRefGoogle Scholar
  39. Ringot C et al (2011) Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromolecules 12:1716–1723. doi: 10.1021/bm200082d CrossRefGoogle Scholar
  40. Schmidt R (2006) Photosensitized generation of singlet oxygen. Photochem Photobiol 82:1161–1177. doi: 10.1562/2006-03-03-lR-833 CrossRefGoogle Scholar
  41. Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757. doi: 10.1021/cr010371d CrossRefGoogle Scholar
  42. Seely GR (1976) Photooxidative destruction of organic wastes. US3951797AGoogle Scholar
  43. Seybold PG, Gouterman M, Callis J (1969) Calorimetric, photometric, and lifetime determinations of fluorescence yields of fluorescein dyes. Photochem Photobiol 9:229–242. doi: 10.1111/j.1751-1097.1969.tb07287.x CrossRefGoogle Scholar
  44. Spikes JD (1982) Photodynamic reactions in photomedicine. In: Regan J, Parrish J (eds) The science of photomedicine. Photobiology. Springer US pp 113–144. doi:10.1007/978-1-4684-8312-3_5Google Scholar
  45. Tekdas DA, Durmus M, Yanik H, Ahsen V (2012) Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-Group 3A phthalocyanine conjugates (QD-Pc). Spectrochim Acta A 93:313–320. doi: 10.1016/j.saa.2012.03.036 CrossRefGoogle Scholar
  46. Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538. doi: 10.1016/j.carbpol.2010.12.017 CrossRefGoogle Scholar
  47. X-x Hu, J-p He (2014) Synthesis of anti-microbial agent with silicon quaternary ammonium salt. Yinran 40:13–17Google Scholar
  48. Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 87:2482–2487. doi: 10.1016/j.carbpol.2011.11.017 CrossRefGoogle Scholar
  49. Zhang X-F, Li X (2011) The photostability and fluorescence properties of diphenylisobenzofuran. J Lumin 131:2263–2266. doi: 10.1016/j.jlumin.2011.05.048 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hubert Hettegger
    • 1
  • Markus Gorfer
    • 2
    • 3
  • Salvatore Sortino
    • 4
  • Aurore Fraix
    • 4
  • Dragana Bandian
    • 2
  • Christian Rohrer
    • 5
  • Wolfgang Harreither
    • 5
  • Antje Potthast
    • 1
  • Thomas Rosenau
    • 1
    • 6
  1. 1.Division of Chemistry of Renewable Resources, Christian-Doppler Laboratory “Advanced Cellulose Chemistry and Analytics”, Department of ChemistryUniversity of Natural Resources and Life Sciences Vienna (BOKU)TullnAustria
  2. 2.Bioresources UnitAIT - Austrian Institute of Technology GmbHTullnAustria
  3. 3.Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life Sciences Vienna (BOKU)TullnAustria
  4. 4.Division of Chemistry, Department of Drug SciencesUniversity of CataniaCataniaItaly
  5. 5.Lohmann & Rauscher GmbH & Co. KGNeuwiedGermany
  6. 6.ViennaAustria

Personalised recommendations