Skip to main content
Log in

Effects of charge ratios of xylan-poly(allylamine hydrochloride) complexes on their adsorption onto different surfaces

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The adsorption behavior of polyelectrolyte complexes (PECs) of poly(allylamine hydrochloride) (PAH) and 4-O-methylglucuronoxylan (Xyl) onto silica surface, cellulose nanofibrils (CNFs) model surfaces, and unbleached softwood kraft fibers was studied. Different charge ratios and ionic strengths of the liquid medium (q /q +: 0.3, 0.5 and 0.8 in 1 mM NaCl, and q /q +: 0.2, 0.3 and 0.5 in 10 mM NaCl), at pH 7.5 were considered. First, the complexes obtained were characterized by measuring the charge density, the particle size and the zeta potential. Then, the adsorption of PAH alone and PECs on silica and CNF model surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). The QCM-D test indicated that: (a) adsorbed cationic layers of PECs were soft in 10 mM NaCl, (b) higher adsorption was observed at higher ionic strength and (c) the highest adsorption of complex and coupled water was found at a charge ratio of 0.3. The SPR results analyzed together with the corresponding QCM-D results revealed that a significant portion of the adsorbed layers corresponded to coupled water on the cationic PEC structures. Morphology and structures of the adsorbed PEC layers studied using atomic force microscopy showed that the majority of the PECs were spherical, while some bigger aggregates were also found. Finally, the retention of different PECs on an unbleached softwood pulp was determined and the maximum retention was obtained when the PEC charge ratio was 0.5 in a 10 mM NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahola S, Österberg M, Laine J (2008a) Cellulose nanofibrils adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314. doi:10.1007/s10570-007-9167-3

    Article  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282

    Article  CAS  Google Scholar 

  • Ankerfors C (2008) Polyelectrolyte complexes: their preparation, adsorption behaviour, and effect on paper properties. Licenciate Thesis, KTH, Department of Fibre and Polymer Technology; Stockholm, Sweden

  • Ankerfors C, Wågberg L (2014) Polyelectrolyte complexes for tailoring of wood fibre surfaces. Adv Polym Sci 256:1–24

    Article  CAS  Google Scholar 

  • Cegnar M, Ker J (2010) Self-assembled polyelectrolyte nanocomplexes of alginate, chitosan and ovalbumin. Acta Chim Slov 57:431–441

    CAS  Google Scholar 

  • Chen J, Heitmann JA, Hubbe MA (2003) Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surf A Physcochem Eng Asp 223:215–230

    Article  CAS  Google Scholar 

  • Dautzenberg H (1997) Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 30:7810–7815

    Article  CAS  Google Scholar 

  • Dautzenberg H, Jaeger W (2002) Effect of charge density on the formation and salt stability of polyelectrolyte complexes. Macromol Chem Phys 203(14):2095–2102

    Article  CAS  Google Scholar 

  • Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • Galván MV, Mocchiutti P, Schnell CN, Liitiä T, Zanuttini MA (2013) Dual-adsorption of poly(allylamine hydrochloride) and lignosulfonate onto recycled cellulosic fibers. Cellul Chem Technol 47(7–8):631–641

    Google Scholar 

  • Gärdlund L, Wågberg L, Gernandt R (2003) Polyelectrolyte complexes for surface modification of wood fibers. II. Influence of complexes on wet and dry strength of paper. Colloids Surf A Physicochem Eng Asp 218:137–149

    Article  Google Scholar 

  • Gärdlund L, Forsström J, Wågberg L (2005) Influence of polyelectrolyte complexes on the strength properties of papers from unbleached kraft pulps with different yields. Nord Pulp Pap Res J 20:36–42

    Article  Google Scholar 

  • Gernandt R, Wågberg L, Gärdlund L, Dautzenberg H (2003) Polyelectrolyte complexes for surface modification of wood fibres I. Preparation and characterisation of complexes for dry and wet strength improvement of paper. Colloids Surf A Physicochem Eng Asp 213:15–25

    Article  CAS  Google Scholar 

  • Granqvist N, Liang H, Laurila T, Sadowski J, Yliperttula M, Viitala T (2013) Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis. Langmuir 29:8561–8571

    Article  CAS  Google Scholar 

  • Hodge JE, Hofreiter BT (1962) Determination of reducing sugars and carbohydrates. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry. Academic Press, New York

    Google Scholar 

  • Horvath AE, Lindstrom T, Laine J (2006) On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830. doi:10.1021/la052217i

    Article  CAS  Google Scholar 

  • Hubbe MA, Moore SM, Lee SY (2005) Effects of charge ratios and cationic polymer nature on polyelectrolyte complex deposition onto cellulose. Ind Eng Chem Res 44:3068–3074

    Article  CAS  Google Scholar 

  • Jung SJ, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648. doi:10.1021/la971228b

    Article  CAS  Google Scholar 

  • Kabanov VA, Zezin BA (1984) Soluble interpolymeric complexes as a new class of synthetic polyelectrolytes. Pure Appl Chem 56(3):343–354

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidning 87:48–53

    Google Scholar 

  • Koetz J, Kosmella S (2007) Polyelectrolyte and nanoparticles. Springer, Berlin

    Google Scholar 

  • Kontturi KS, Tammelin T, Johansson L-S, Stenius P (2008) Adsorption of cationic starch on cellulose studied by QCM-D. Langmuir 24:4743–4749. doi:10.1021/la703604j

    Article  CAS  Google Scholar 

  • Kramer G, Buchhammer H-M, Lunkwitz K (1997) Surface modification by polyelectrolyte complexes: influence of different polyelectrolyte components and substrates. Colloids Surf A 122:1–12

    Article  CAS  Google Scholar 

  • Lankalapalli S, Kolapalli VRL (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487

    Article  CAS  Google Scholar 

  • Linder A, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surface. Langmuir 19:5072–5077. doi:10.1021/la0341355

    Article  CAS  Google Scholar 

  • Lingström R, Wågberg L (2008) Polyelectrolyte multilayers on wood fibers: influence of molecular weight on layer properties and mechanical properties of papers from treated fibers. J Colloid Interface Sci 328:233–242. doi:10.1016/j.jcis.2008.08.065

    Article  Google Scholar 

  • Lloyd JA, Horne CW (1993) The determination of fibre charge and acidic groups of radiata pine pulps. Nord Pulp Pap Res J 8(1):48–57

    Article  CAS  Google Scholar 

  • Malmström J, Nieuwoudt MK, Strover LT, Hackett A, Laita O, Brimble MA, Williams D, Travas-Sejdic J (2013) Grafting from poly(3,4-ethylenedioxythiophene): a simple route to versatile electrically addressable surfaces. Macromolecules 46(12):4955–4965. doi:10.1021/ma400803j

    Article  Google Scholar 

  • Mocchiutti P, Zanuttini MA (2007) Key considerations in the determination of polyelectrolyte concentration by the colloidal titration method. Bioresources 2(3):399–407

    CAS  Google Scholar 

  • Mocchiutti P, Galván MV, Peresin MS, Schnell CN, Zanuttini MA (2015) Complexes of xylan and synthetic polyelectrolytes. Characterization and adsorption onto high quality unbleached fibers. Carbohydr Polym 116:131–139

    Article  CAS  Google Scholar 

  • Norgren M, Gärdlund L, Notley SM, Htun M, Wågberg L (2007) Smooth model surfaces from lignin derivates. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D. Langmuir 23:3737–3743

    Article  CAS  Google Scholar 

  • Ondaral S, Ankerfors C, Wågberg L, Ödberg L (2010) Surface induced rearrangement of polyelectrolyte complexes: influence of complex composition on adsorbed layer properties. Langmuir 26(18):14606–14614

    Article  CAS  Google Scholar 

  • Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled of biomolecules. Biomacromolecules 12:4311–4318

    Article  CAS  Google Scholar 

  • Peresin MS, Kammiovirta K, Harri S, Tammelin T (2012) Structure features and water interactions of etherified xylan thin films. J Polym Environ 20:895–904

    Article  CAS  Google Scholar 

  • Petzold G, Schwarz S (2014) Polyelectrolyte complexes in flocculation applications. Adv Polym Sci 256:25–66. doi:10.1007/12_2012_205

    Article  CAS  Google Scholar 

  • Petzold G, Buchhammer HM, Lunkwitz K (1996) The use of oppositely charged polyelectrolytes as flocculants and retention aids. Colloids Surf A Physicochem Eng Asp 119(1):87–92

    Article  CAS  Google Scholar 

  • Saarinen T, Österberg M, Laine J (2008) Adsorption of polyelectrolyte multilayers and complexes on silica and cellulose surfaces studied by QCM-D. Colloids Surf A Physcochem Eng Asp 330:134–142

    Article  CAS  Google Scholar 

  • Saether HV, Holme HK, Maurstad G, Smidsrod O, Stokke BT (2008) Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 74:813–821

    Article  CAS  Google Scholar 

  • Sambles JR, Bradbery GW, Yang F (1991) Optical excitation of surface plasmons: an introduction. Contemp Phys 32(3):173–183

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Song J, Yamaguchi T, Silva DJ, Hubbe M, Rojas O (2010) Effect of charge asymmetry on adsorption and phase separation of polyampholytes on silica and cellulose surfaces. J Phys Chem B 114:719–727

    Article  CAS  Google Scholar 

  • Ström G, Barla P, Stenius P (1985) The formation of polyelectrolyte complexes between pine xylan and cationic polymers. Colloids Surf 13:193–207

    Article  Google Scholar 

  • Tadros ThF, Lyklema JJ (1968) Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations. J Electroanal Chem Interfacial Electrochem 17(3–4):267–275

    Article  CAS  Google Scholar 

  • Tammelin T, Meta J, Johansson L-S, Stenius P (2004) Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D. Langmuir 20:10900–10909

    Article  CAS  Google Scholar 

  • Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir–Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13:519

    Article  CAS  Google Scholar 

  • Tammelin T, Paananen A, Österberg M (2009) The nanoscience and technology of renewable biomaterials. In: Lucia AL, Rojas OJ (eds) Wiley-Blackwell Publishing Ltd, West Sussex, pp 149–172

  • Terayama H (1952) Method of colloid titration a new titration between polymer adsorption. Colloids Surf A Physicochem Eng Asp 116:269–275

    Google Scholar 

  • Van de Steeg HGM, Cohen Stuart MA, de Keizer A, Bijsterbosch BH (1992) Polyelectrolyte adsorption: a subtle balance of force. Langmuir 8(10):2538–2546

    Article  Google Scholar 

  • van de Ven TGM (2000) A model for the adsorption of polyelectrolytes on pulp fibers: relation between fiber structure and polyelectrolyte properties. Nord Pulp Pap Res J 15(5):494–501

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support received from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and the VTT Technical Research Centre of Finland. Thanks are given to Ms.Sc. Pia Qvintus, Research Team Leader of the Centre of High Performance Fibre Products for her support on the practicalities concerning personnel exchange. The authors would also like to thank Dr. Hannes Orelma and Gerardo Rossi for their help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Soledad Peresin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galván, M.V., Peresin, M.S., Mocchiutti, P. et al. Effects of charge ratios of xylan-poly(allylamine hydrochloride) complexes on their adsorption onto different surfaces. Cellulose 22, 2955–2970 (2015). https://doi.org/10.1007/s10570-015-0706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0706-z

Keywords

Navigation