Skip to main content
Log in

TEMPO-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To enhance adsorption capacity for paraquat, paper pulp cellulose is particularly oxidized via the TEMPO-mediated oxidization to functionalize cellulose with carboxylates. The TEMPO-oxidized pulp (TOP) exhibited more than 20-time higher and 5-time higher adsorption capacity than the original paper pulp and activated carbon, respectively. The adsorption kinetics, isotherm and thermodynamics of paraquat to TOP are also determined and analyzed. The adsorption isotherm indicates that TOP can reach an adsorption capacity of 175 mg g−1 at 20 °C. Factors affecting the adsorption are also examined including TOP loading, initial concentration, temperature, pH and salts. TOP can also be regenerated by a simple washing using a highly concentrated NaCl solution and the regeneration efficiency was maintained above 90 % up to 4 cycles. These features indicate that TOP can be a high-capacity and reusable adsorbent to remove paraquat from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andreozzi R, Insola A, Caprio V, D’Amore MG (1993) Ozonation of 1,1′ dimethyl, 4,4′ bipyridinium dichloride (Paraquat) in aqueous solution. Environ Technol 14:695–700. doi:10.1080/09593339309385340

    Article  CAS  Google Scholar 

  • Aouada FA, Pan Z, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J Appl Polym Sci 114:2139–2148. doi:10.1002/app.30339

    Article  CAS  Google Scholar 

  • Barna S, Ott E, Nguyen T, Shannon M, Scheeline A (2013) Silica adsorbents and peroxide functionality for removing paraquat from wastewater. J Environ Eng 139:975–985. doi:10.1061/(ASCE)EE.1943-7870.0000702

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577. doi:10.1002/(SICI)1097-0290(19960305)49:5<568:AID-BIT10>3.0.CO;2-6

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101. doi:10.1002/polb.20938

    Article  CAS  Google Scholar 

  • Carr RJ, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49:1290–1294

    CAS  Google Scholar 

  • Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169:919–926. doi:10.1093/aje/kwp006

    Article  Google Scholar 

  • Danish M, Sulaiman O, Rafatullah M, Hashim R, Ahmad A (2010) Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (Phoenix dactylifera) stone carbon. J Dispers Sci Technol 31:248–259. doi:10.1080/01932690903167368

    Article  CAS  Google Scholar 

  • Das DP, Das J, Parida K (2003) Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J Colloid Interface Sci 261:213–220. doi:10.1016/S0021-9797(03)00082-1

    Article  CAS  Google Scholar 

  • Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637:33–42. doi:10.1016/j.jelechem.2009.09.027

    Article  CAS  Google Scholar 

  • Diaz Kirmser EM, Mártire DO, MnC Gonzalez, Rosso JA (2010) Degradation of the herbicides clomazone, paraquat, and glyphosate by thermally activated peroxydisulfate. J Agric Food Chem 58:12858–12862. doi:10.1021/jf103054h

    Article  CAS  Google Scholar 

  • Fengel D (1992) Characterization of cellulose by deconvoluting the OH valency range in FTIR Spectra. 46. doi:10.1515/hfsg.1992.46.4.283

  • Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. 47. doi:10.1515/hfsg.1993.47.2.103

  • Fernández M, Ibáñez M, Picó Y, Mañes J (1998) Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain). Arch Environ Contam Toxicol 35:377–384. doi:10.1007/s002449900391

    Article  Google Scholar 

  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055. doi:10.1016/j.watres.2011.05.016

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y

    CAS  Google Scholar 

  • Hsu S-T, Pan T-C (2007) Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresour Technol 98:3617–3621. doi:10.1016/j.biortech.2006.11.060

    Article  CAS  Google Scholar 

  • Ibrahim KM, Jbara HA (2009) Removal of paraquat from synthetic wastewater using phillipsite–faujasite tuff from Jordan. J Hazard Mater 163:82–86. doi:10.1016/j.jhazmat.2008.06.109

    Article  CAS  Google Scholar 

  • Isobe N, Chen X, Kim U-J, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195–201. doi:10.1016/j.jhazmat.2013.05.024

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164. doi:10.1023/A:1009208603673

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kommineni S, Zoeckler J, Stocking A, Liang S, Flores A, Kavanaugh M (2000) Advanced oxidation processes: literature review. In: Melin G (ed) Treatment technologies for removal of methyl tertiary butyl ether (MTBE) from drinking water: air stripping, advanced oxidation process, granular activated carbon, synthetic resin sorbents, 2nd edn. National Water Research Institute, Fountain Valley, pp 111–208

  • Kopytko M, Chalela G, Zauscher F (2002) Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. Electron J Biotechnol 5:182–195

    Article  Google Scholar 

  • Koyuncu I (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination 143:243–253. doi:10.1016/S0011-9164(02)00263-1

    Article  CAS  Google Scholar 

  • Liao X-P, Shi B (2005) Adsorption of fluoride on zirconium (IV)-impregnated collagen fiber. Environ Sci Technol 39:4628–4632. doi:10.1021/es0479944

    Article  CAS  Google Scholar 

  • Namasivayam C, Thamaraiselvi K, Yamuna RT (1994) Removal of paraquat by adsorption on ‘waste’ Fe(III)/Cr(III) hydroxide: adsorption rates and equilibrium studies. Pestic Sci 41:7–12. doi:10.1002/ps.2780410103

    Article  CAS  Google Scholar 

  • Nanseu-Njiki CP, Dedzo GK, Ngameni E (2010) Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. J Hazard Mater 179:63–71. doi:10.1016/j.jhazmat.2010.02.058

    Article  CAS  Google Scholar 

  • Rashed MN (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. Org Pollutants Monit Risk Treat. doi:10.5772/54048

  • Ricketts DC (1999) The microbial biodegradation of paraquat in soil. Pestic Sci 55:596–598. doi:10.1002/(SICI)1096-9063(199905)55:5<596:AID-PS961>3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Rongchapo W, Sophiphun O, Rintramee K, Prayoonpokarach S, Wittayakun J (2013) Paraquat adsorption on porous materials synthesized from rice husk silica. Water Sci Technol 68:863–869

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. doi:10.1021/bm0497769

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi:10.1021/bm060154s

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Santos MSF, Alves A, Madeira LM (2011) Paraquat removal from water by oxidation with Fenton’s reagent. Chem Eng J 175:279–290. doi:10.1016/j.cej.2011.09.106

    Article  CAS  Google Scholar 

  • Santos MSF, Madeira LM, Alves A (2014) Paraquat quantification in deposits from drinking water networks. Anal Methods 6:3791–3798. doi:10.1039/C4AY00121D

    Article  CAS  Google Scholar 

  • Seki Y, Yurdakoç K (2005) Paraquat adsorption onto clays and organoclays from aqueous solution. J Colloid Interface Sci 287:1–5. doi:10.1016/j.jcis.2004.10.072

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/ma00009a050

    Article  CAS  Google Scholar 

  • Summers LA (1980) The bipyridinium herbicides. Academic Press, London

    Google Scholar 

  • Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 18:589–600. doi:10.1046/j.1460-9568.2003.02781.x

    Article  Google Scholar 

  • Tsai WT, Lai CW, Hsien KJ (2003) Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J Colloid Interface Sci 263:29–34. doi:10.1016/S0021-9797(03)00213-3

    Article  CAS  Google Scholar 

  • Tsai WT, Hsien KJ, Chang YM, Lo CC (2005) Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth. Bioresour Technol 96:657–663. doi:10.1016/j.biortech.2004.06.023

    Article  CAS  Google Scholar 

  • Van Loon LR, Glaus MA (1997) Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J Environ Polym Degr 5:97–109. doi:10.1007/BF02763593

    Article  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49:1491–1496. doi:10.1002/app.1993.070490817

    Article  CAS  Google Scholar 

  • Weber JB, Weed SB (1968) Adsorption and desorption of diquat, paraquat, and prometone by montmorillonitic and kaolinitic clay minerals. Soil Sci Soc Am J 32:485–487. doi:10.2136/sssaj1968.03615995003200040020x

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1984) Paraquat and diquat: Environmental health criteria, vol 39. International programme on chemical safety, World Health Organization, Geneva

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology, Taiwan (103-2622-E-005-021-CC3). The authors are also grateful for supports from Mr. Fu-Kong Hsu on the instrumental analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun-Yi Andrew Lin or Chih-Feng Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, KY.A., Heish, YT., Tsai, TY. et al. TEMPO-oxidized pulp as an efficient and recyclable sorbent to remove paraquat from water. Cellulose 22, 3261–3274 (2015). https://doi.org/10.1007/s10570-015-0703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0703-2

Keywords

Profiles

  1. Chih-Feng Huang