Advertisement

Cellulose

, Volume 22, Issue 4, pp 2471–2481 | Cite as

Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose

  • Ewa Głowińska
  • Janusz DattaEmail author
Original Paper

Abstract

The aim of this work was to obtain bio-based polyurethane composites using biocomponents such as, bio-glycol, modified natural oil-based polyol, and microcrystalline cellulose (MCC). The prepolymer method was used to prepare the bio-based polyurethane matrix. Prepolymer synthesised from 4,4′-diphenylmethane diisocyanate and a polyol mixture containing 75 wt% commercial polyether and 25 wt% hydroxylated soybean oils (H3) was later subjected to chain extension polymerization with bio-1,3-propanediol acting as a chain extender . Different composites were produced by dispersing 5, 10, 15 and 20 wt% of microcrystalline cellulose powder in the polyurethane matrix. The polymerization reaction was catalyzed with 1,4-diazabicyclo[2.2.2]octane. The influence of MCC content on the structure and the mechanical and thermo-mechanical properties of the obtained bio-based polyurethane composites was investigated. The FTIR analysis demonstrated that the addition of MCC did not significantly change the chemical structure of the obtained composites. The SEM images showed good interfacial adhesion between the bio-filler and the partially bio-based matrix of the composites. The results of thermo-mechanical analysis demonstrated that the application of MCC filler affected the storage and loss moduli. The tensile strength and elongation at break decreased with increasing MCC content. Moreover, the addition of MCC improved the hardness of the obtained environmentally friendly materials.

Keywords

Bio-based 1,3-propanediol Microcrystalline cellulose Modified soybean oil Bio-composites Bio-based polyurethane 

Notes

Acknowledgments

The authors wish to thank DuPont Company (USA) and International Fibre Corporation, (Belgium) for kindly providing the bio-glycol and microcrystalline cellulose.

References

  1. Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron annihilation spectroscopy. Polym Test 32:115–122CrossRefGoogle Scholar
  2. Ashori A (2008) Wood—plastic composites as promising green-composites for automotive industries. Biores Technol 99:4661–4667CrossRefGoogle Scholar
  3. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterisation of nanocellulose reinforced shape memory polyurethanes. Polym Int 57:651–659CrossRefGoogle Scholar
  4. Auad ML, Mosiewicki MA, Richardson T, Aranguren MI, Marcovich NE (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225CrossRefGoogle Scholar
  5. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  6. Cataldi A, Dorigato A, Deflorian F, Pegoretti A (2014) Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J Mater Sci 49(5):2035–2044CrossRefGoogle Scholar
  7. Datta J, Głowińska E (2011) Influence of cellulose on mechanical and thermomechanical properties of elastomers obtained from mixtures containing natural rubber. Polimery 11(12):823–827Google Scholar
  8. Datta J, Głowińska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesised bio-polyurethanes. Ind Crop Prod 61:84–91CrossRefGoogle Scholar
  9. Dimitrov KV, Herzog M, Nenkova S (2013) Fe3O4 modification of microcrystalline cellulose for composite materials. Am J Chem 3(5):140–147Google Scholar
  10. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  11. Głowińska E, Datta J (2014) A mathematical model of rheological behavior of novel bio-based isocyanate-terminated polyurethane prepolymers. Ind Crop Prod 60:123–129CrossRefGoogle Scholar
  12. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS (2013) Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Mater Lett 113:87–89CrossRefGoogle Scholar
  13. Hatakeyama H, Kato N, Nanbo T, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47:7254–7261CrossRefGoogle Scholar
  14. Ismail EA, Motawie AM, Sadek EM (2011) Synthesis and characterisation of polyurethane coatings based on soybean oil-polyester polyols. Egypt J Petrol 20:1–8CrossRefGoogle Scholar
  15. Jankauskaitė V, Abzalbekuly B, Lisauskaitė A, Procyčevas I, Fataraitė E, Vitkauskienė A, Janakhmetov U (2014) Silicone rubber and microcrystalline cellulose composites with antimicrobial properties. Mater Sci 20(1):42–49Google Scholar
  16. Kiziltas A, Gardner D, Han Y, Yang HS (2011a) Thermal properties of microcrystalline cellulose-filled PET-PTT blend polymer composites. J Therm Anal Calorim 103(1):163–170CrossRefGoogle Scholar
  17. Kiziltas A, Gardner DJ, Han Y, Yang HS (2011b) Dynamic mechanical behavior and thermal properties of microcrystalline cellulose (MCC)-filled Nylon 6 composites. Thermochim Acta 519:38–43CrossRefGoogle Scholar
  18. Larkin P (2010) Infrared and Raman Spectroscopy. Principles and Spectral Interpretation, Elsevier, ConnecticutGoogle Scholar
  19. Lopes RVV, Osorio LFB, Santos ML, Sales MJA (2012) Characterisation of polyurethanes from vegetable oils by TG/DTG, DMA and FT-IR. Macromol Symp 319:173–178CrossRefGoogle Scholar
  20. Luo X, Mohantya A, Misraa M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crops Prod 47:13–19CrossRefGoogle Scholar
  21. Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRefGoogle Scholar
  22. Miao S, Liu Y, Wang P, Zhang S (2012) Castor oil and microcrystalline cellulose based polymer composites with high tensile strength. Adv Mater Res 399(401):1531–1535Google Scholar
  23. Mosiewicki MA, Casado U, Marcovich NE, Aranguren MI (2009) Polyurethanes from tung oil: polymer characterization and composites. Polym Eng Sci 49(4):685–692CrossRefGoogle Scholar
  24. Panaitescu DM, Notingher PV, Ghiurea M, Ciuprina F, Paven H, Iorga M, Florea D (2007) Properties of composite materials from polyethylene and cellulose microfibrils. J Optoelectron Adv Mater 9(8):2524–2528Google Scholar
  25. Pandey JK, Nakagaito AN, Takagi H (2013) Fabrication and applications of cellulose nanoparticle-based polymer composites. The Free Library (January, 1), http://www.thefreelibrary.com/Fabrication and applications of cellulose nanoparticle-based polymer.-a0314444342. Accessed 27 Aug 2014
  26. Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88CrossRefGoogle Scholar
  27. Patricio PS, Pereira IM, Ferreira da Silva NC, Ayres E, Pereira FV, Oréfice RL (2013) Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation. Eur Polym J 49:3761–3769CrossRefGoogle Scholar
  28. Picker KM, Hoag SW (2002) Characterisation of the thermal properties of microcrystalline cellulose by modulated temperature differential scanning calorimetry. J Pharm Sci 91(2):342–349CrossRefGoogle Scholar
  29. Prisacanu C (2011) Polyurethane elastomers from morphology to mechanical aspects. Springer, WienCrossRefGoogle Scholar
  30. Rueda L, Saraleguia A, Fernández d’Arlasa B, Zhoub Q, Berglund LA, Corcueraa MA, Mondragona I, Eceizaa A (2013) Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohyd Polym 92:751–757CrossRefGoogle Scholar
  31. Saralegi A, Gonzalez ML, Valea A, Eceiza A, Corcuera MA (2014) The role of cellulose nanocrystals in the improvement of the shape-memory properties of castor oil-based segmented thermoplastic polyurethanes. Compos Sci Technol 92:27–33CrossRefGoogle Scholar
  32. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  33. Sobczak R, Nitkiewicz Z, Koszkul J (2002) Examination of the dynamic mechanical properties of polypropylene composites reinforced glass fibre. Kompozyty 2(3):78–80Google Scholar
  34. Sun X, Lu C, Liu Y, Zhang W, Zhang X (2014) Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohyd Polym 101:642–649CrossRefGoogle Scholar
  35. Wu Q, Henriksson M, Liu X, Berglund LA (2007) A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 8(12):3687–3692CrossRefGoogle Scholar
  36. Xu Y, Petrović Z, Das S, Wilkes GL (2008) Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 49(9):4248CrossRefGoogle Scholar
  37. Yakubu A, Tanko MU, Sani SDM (2011) Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv Appl Sci Res 2(6):532–540Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Gdansk University of TechnologyGdańskPoland

Personalised recommendations