Skip to main content

Advertisement

Log in

Magnetic Cu0.5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel magnetic cellulose nanocrystal material decorated with Cu–Co ferrite was synthesized in situ by controlled hydrothermal chemistry in the presence of NH3·H2O. The ferrite nanoparticles immobilized on cellulose were found to exist in their oxide forms as identified by FTIR, XPS and Raman spectra. They demonstrate very good dispersibility with smaller crystal size after being formed in situ on the surface of a nanocellulose crystal template by the application of ammonia. The crystalline structure of cellulose can only be maintained at relatively low contents of ferrite surface decoration (11.0 %) versus high contents (e.g., 75.6 %). Moreover, the magnetic properties of the resultant materials could be controlled by changing the ratio of the molecular components in the ferrites. At the low ferrite contents, the composition was Cu0.5Co0.5Fe2O4 at a small crystal size of 13.5 nm that provided a maximum saturation magnetization of 10.95 emu/g. Finally, the thermostability of the nanocomposite was improved after immobilizing the magnetic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Altavilla C, Ciliberto E, Aiello A, Sangregorio C, Gatteschi D (2007) A shortcut to organize self-assembled monolayers of cobalt ferrite nanoparticles on silicon. Chem Mater 19:5980–5985

    Article  CAS  Google Scholar 

  • Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan MP, Philip J, Raj B (2010) Influence of Co2+ ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J Phys Chem C 114:6334–6341

    Article  CAS  Google Scholar 

  • Baig RBN, Nadagouda MN, Varma RS (2014) Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions. Green Chem 16:4333–4338

    Article  CAS  Google Scholar 

  • Bao N, Shen L, Wang Y, Padhan P, Gupta A (2007) A facile thermolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129:12374–12375

    Article  CAS  Google Scholar 

  • Barreto A, Santiago VR, Mazzetto SE, Denardin JC, Lavín R, Mele G, Ribeiro M, Vieira IG, Gonçalves T, Ricardo N (2011) Magnetic nanoparticles for a new drug delivery system to control quercetin releasing for cancer chemotherapy. J Nanoparticle Res 13:6545–6553

    Article  CAS  Google Scholar 

  • Comes Franchini M, Baldi G, Bonacchi D, Gentili D, Giudetti G, Lascialfari A, Corti M, Marmorato P, Ponti J, Micotti E (2010) Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer. Small 6:366–370

    Article  CAS  Google Scholar 

  • De Souza LK, Zamian JR, Da Rocha Filho GN, Soledade LE, Dos Santos IM, Souza AG, Scheller T, Angélica RS, Da Costa CE (2009) Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method. Dyes Pigments 81:187–192

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  Google Scholar 

  • Eshraghi M, Kameli P (2011) Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr Appl Phys 11:476–481

    Article  Google Scholar 

  • Fu Y, Chen Q, He M, Wan Y, Sun X, Xia H, Wang X (2012) Copper ferrite-graphene hybrid: a multifunctional heteroarchitecture for photocatalysis and energy storage. Ind Eng Chem Res 51:11700–11709

    Article  CAS  Google Scholar 

  • Galland S, Andersson RL, Salajková M, Ström V, Olsson RT, Berglund LA (2013) Cellulose nanofibers decorated with magnetic nanoparticles–synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. J Mater Chem C 1:7963–7972

    Article  CAS  Google Scholar 

  • Gandhi N, Singh K, Ohlan A, Singh DP, Dhawan SK (2011) Thermal, dielectric and microwave absorption properties of polyaniline—CoFe2O4 nanocomposites. Compos Sci Technol 71:1754–1760

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  • Han Q, Liu Xu, Chen Wang, Zhang H (2007) Growth and properties of single-crystalline γ-Fe2O3 nanowires. J Phys Chem C 111:5034–5038

    Article  CAS  Google Scholar 

  • Han L, Wei H, Tu B, Zhao D (2011) A facile one-pot synthesis of uniform core–shell silver nanoparticle@ mesoporous silica nanospheres. Chem Commun 47:8536–8538

    Article  CAS  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    Article  CAS  Google Scholar 

  • He HY (2012) Comparison study on magnetic property of Co0.5Zn0.5Fe2O4 powders by template-assisted sol–gel and hydrothermal methods. J Mater Sci: Mater Electron 23:995–1000

    CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • Jovanović S, Spreitzer M, Tramšek M, Trontelj Z, Suvorov D (2014) Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J Phys Chem C 118:13844–13856

    Article  Google Scholar 

  • Kaiser M (2009) Effect of nickel substitutions on some properties of Cu–Zn ferrites. J Alloy Compd 468:15–21

    Article  CAS  Google Scholar 

  • Kim C, Lee J, Katoh S, Murakami R, Yoshimura M (2001) Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method. Mater Res Bull 36:2241–2250

    Article  CAS  Google Scholar 

  • Kim T, Reis L, Rajan K, Shima M (2005) Magnetic behavior of iron oxide nanoparticle—biomolecule assembly. J Magn Magn Mater 295:132–138

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29:710–716

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589

    Article  CAS  Google Scholar 

  • Lee C, Jeong H, Lim ST, Sohn M, Kim DW (2010) Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. ACS Appl Mater Interfaces 2:756–759

    Article  CAS  Google Scholar 

  • Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D (2013a) The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34:3882–3890

    Article  CAS  Google Scholar 

  • Li W, Zhao X, Liu S (2013b) Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydr Polym 94:278–285

    Article  CAS  Google Scholar 

  • Lin X, Ji G, Liu Y, Huang Q, Yang Z, Du Y (2012) Formation mechanism and magnetic properties of hollow Fe3O4 nanospheres synthesized without any surfactant. Cryst Eng Commun 14:8658–8663

    Article  CAS  Google Scholar 

  • Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267

    Article  CAS  Google Scholar 

  • Liu S, Zhou J, Zhang L (2011) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18:663–673

    Article  CAS  Google Scholar 

  • Liu S, Yan Q, Tao D, Yu T, Liu X (2012) Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates. Carbohydr Polym 89:551–557

    Article  CAS  Google Scholar 

  • Lüders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour JP, Bobo JF, Fontcuberta J, Fert A (2006) NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv Mater 18:1733–1736

    Article  Google Scholar 

  • Mohamed RM, Rashad MM, Haraz FA, Sigmund W (2010) Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method. J Magn Magn Mater 322:2058–2064

    Article  CAS  Google Scholar 

  • Nasir Baig RB, Varma RS (2014) Magnetic carbon-supported palladium nanoparticles: an efficient and sustainable catalyst for hydrogenation reactions. ACS Sustain Chem Eng 2:2155–2158

    Article  CAS  Google Scholar 

  • Nata IF, Sureshkumar M, Lee C (2011) One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv 1:625–631

    Article  CAS  Google Scholar 

  • Nypel T, Rodriguez-Abreu C, Rivas J, Dickey MD, Rojas OJ (2014) Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose 21:2557–2566

    Article  Google Scholar 

  • Olsson RT, Samir MA, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Pankhurst QA, Thanh N, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001

    Article  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    Article  CAS  Google Scholar 

  • Reddy GK, Boolchand P, Smirniotis PG (2012) Unexpected behavior of copper in modified ferrites during high temperature WGS reaction—aspects of Fe3+ ↔ Fe2+ redox chemistry from mössbauer and XPS studies. J Phys Chem C 116:11019–11031

    Article  CAS  Google Scholar 

  • Rezlescu N, Rezlescu E, Sava CL, Tudorache F, Popa PD (2004) Effects of some ionic substitutions on sintering, structure and humidity sensitivity of MgCu ferrite. Phys Status Solidi (a) 201:17–25

    Article  CAS  Google Scholar 

  • Roy B, Bharali P, Konwar BK, Karak N (2013) Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials. Bioresour Technol 127:175–180

    Article  CAS  Google Scholar 

  • Salazar-Alvarez G, Olsson RT, Sort J, Macedo WA, Ardisson JD, Baró MD, Gedde UW, Nogués J (2007) Enhanced coercivity in co-rich near-stoichiometric CoxFe3−xO4 + δ nanoparticles prepared in large batches. Chem Mater 19:4957–4963

    Article  CAS  Google Scholar 

  • Selvan RK, Krishnan V, Augustin CO, Bertagnolli H, Kim CS, Gedanken A (2007) Investigations on the structural, morphological, electrical, and magnetic properties of CuFe2O4–NiO nanocomposites. Chem Mater 20:429–439

    Article  Google Scholar 

  • Sivakumar M, Takami T, Ikuta H, Towata A, Yasui K, Tuziuti T, Kozuka T, Bhattacharya D, Iida Y (2006) Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature. J Phys Chem B 110:15234–15243

    Article  CAS  Google Scholar 

  • Srivastava M, Ojha AK, Chaubey S, Materny A (2009) Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J Alloy Compd 481:515–519

    Article  CAS  Google Scholar 

  • Sudakar C, Subbanna GN, Kutty TN (2002) Synthesis of acicular hydrogoethite (α-FeOOH·xH2O; 0.1 < x < 0.22) particles using morphology controlling cationic additives and magnetic properties of maghemite derived from hydrogoethite. J Mater Chem 12:107–116

    Article  CAS  Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee C (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    Article  CAS  Google Scholar 

  • Tian C, Fu S, Chen J, Meng Q, Lucia LA (2014a) Graft polymerization of epsilon-caprolactone to cellulose nanocrystals and optimization of grafting conditions utilizing a response surface methodology. Nord Pulp Pap Res J 29:58–68

    Article  CAS  Google Scholar 

  • Tian C, Fu S, Habibi Y, Lucia LA (2014b) Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. Langmuir 30:14670–14679

    Article  CAS  Google Scholar 

  • Vaidyanathan G, Sendhilnathan S (2008) Characterization of Co1−xZnxFe2O4 nanoparticles synthesized by co-precipitation method. Phys B 403:2157–2167

    Article  CAS  Google Scholar 

  • Veeramani H, Aruguete D, Monsegue N, Murayama M, Dippon U, Kappler A, Hochella MF (2013) Low-temperature green synthesis of multivalent manganese oxide nanowires. ACS Sustain Chem Eng 1:1070–1074

    Article  CAS  Google Scholar 

  • Verma S, Pravarthana D (2011) One-pot synthesis of highly monodispersed ferrite nanocrystals: surface characterization and magnetic properties. Langmuir 27:13189–13197

    Article  CAS  Google Scholar 

  • Visinescu D, Paraschiv C, Ianculescu A, Jurca B, Vasile B, Carp O (2010) The environmentally benign synthesis of nanosized CoxZn1−xAl2O4 blue pigments. Dyes Pigments 87:125–131

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Xiong R, Lu C, Wang Y, Zhou Z, Zhang X (2013) Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J Mater Chem A 1:14910–14918

    Article  CAS  Google Scholar 

  • Xu S, Shen D, Wu P, Xu S, Shen D, Wu P (2013) Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide. J Nanoparticle Res 15:1–12

Download references

Acknowledgments

The financial support of the Natural Science Foundation of Guangdong Province, China (2014A030311030) and the Scientific Research Foundation of Guangdong Educational Commission, China (No. 2013KJCX0016) are gratefully acknowledged.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyu Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Fu, S. & Lucia, L.A. Magnetic Cu0.5Co0.5Fe2O4 ferrite nanoparticles immobilized in situ on the surfaces of cellulose nanocrystals. Cellulose 22, 2571–2587 (2015). https://doi.org/10.1007/s10570-015-0658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0658-3

Keywords