, Volume 22, Issue 3, pp 1697–1713 | Cite as

The effect of fibril length and architecture on the accessibility of reducing ends of cellulose Iα to Trichoderma reesei Cel7A

  • Patrick J. O’Dell
  • Akshata R. Mudinoor
  • Sanjai J. Parikh
  • Tina Jeoh
Original Paper


The origin of the recalcitrance of cellulose fibrils to enzymatic hydrolysis is still poorly understood. In this study we examined the role of cellulose fibril lengths and fibril architecture, i.e. the fibrillar structure from lateral association of cellulose microfibrils, on the accessibility to a reducing-end specific cellobiohydrolase, Trichoderma reesei Cel7A (TrCel7A). Cellulose Iα fibrils from Gluconacetobacter xylinus and Cladophora aegagropila showed contrasting digestibility by TrCel7A. Where the bacterial cellulose (BC) fibrils from G. xylinus were rapidly hydrolyzed to near completion by TrCel7A (>99 %) in 120 h, under identical reaction conditions, TrCel7A hydrolysis of the algal cellulose (AC) fibrils from C. aegagropila was slow and limited (~30 %). Mechanically decreasing fibril lengths and increasing average reducing end concentrations by high intensity ultrasonication did not affect the hydrolysis rates of either BC or AC by TrCel7A. Moreover, ultrasonicated AC remained significantly less digestible by TrCel7A than BC despite higher available reducing-end concentrations. In contrast to previous observations of extensive fibrillation of BC by TrCel7A hydrolysis, AC fibrils subjected to hydrolysis by TrCel7A remained associated. The hydrolysis of AC fibrils by TrCel7A roughened the topography of the fibril surfaces in a manner suggesting erosion of microfibrils at the fibril surface. We speculate that the compact cross-sections of the AC microfibrils result in tightly associated fibrils that hinder enzyme access to available reducing ends while the flat, ribbon cross section of the BC microfibrils result in more loosely associated fibrils that more easily dissociate during hydrolysis to improve accessibility and overall digestibility by TrCel7A.


Cellulose fibril Microfibril Cellulose reducing end Cellobiohydrolase Bacterial cellulose 

Supplementary material

10570_2015_618_MOESM1_ESM.doc (625 kb)
Supplementary material 1 (DOC 625 kb)


  1. Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969CrossRefGoogle Scholar
  2. Atalla RH, Vanderhart DL (1984) Native cellulose—a composite of 2 distinct crystalline forms. Science 223:283–285CrossRefGoogle Scholar
  3. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization—relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335. doi:10.1021/ie50554a046 CrossRefGoogle Scholar
  4. Briois B, Saito T, Petrier C, Putaux JL, Nishiyama Y, Heux L, Molina-Boisseau S (2013) I-alpha ->I-beta transition of cellulose under ultrasonic radiation. Cellulose 20:597–603. doi:10.1007/s10570-013-9866-x CrossRefGoogle Scholar
  5. Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum—visualization of site of synthesis and direct measurement of in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRefGoogle Scholar
  6. Cruys-Bagger N, Elmerdahl J, Praestgaard E, Tatsumi H, Spodsberg N, Borch K, Westh P (2012) Pre-steady-state kinetics for hydrolysis of insoluble cellulose by cellobiohydrolase Cel7A. J Biol Chem 287:18451–18458. doi:10.1074/jbc.M111.334946 CrossRefGoogle Scholar
  7. Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P (2013) Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry-US 52:8938–8948. doi:10.1021/bi401210n CrossRefGoogle Scholar
  8. Davis MF, Wolfrum E, Jeoh T (2008) Selection of promising biomass feedstock lines using high-throughput spectrometric and enzymatic assays. In: Vermerris W (ed) Genetic improvement of bioenergy crops. New York, SpringerGoogle Scholar
  9. Dibble CJ, Shatova TA, Jorgenson JL, Stickel JJ (2011) Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol Prog 27:1751–1759. doi:10.1002/btpr.669 CrossRefGoogle Scholar
  10. Dimarogona M, Topakas E, Christakopoulos P (2013) Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Appl Microbiol Biotechnol 97:8455–8465. doi:10.1007/s00253-013-5197-y CrossRefGoogle Scholar
  11. Divne C, Stahlberg J, Teeri TT, Jones A (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325CrossRefGoogle Scholar
  12. EERE (2013) Bioenergy technologies office multi-year program plan, May 2013. U. S. Department of energy, office of energy efficiency and renewable energyGoogle Scholar
  13. Frei E, Preston RD (1961) Cell wall organization and wall growth in the filamentous green Algae Cladophora and Chaetomorpha. II. Spiral structure and spiral growth proceedings of the Royal Society of London series B. Biol Sci 155:55–77. doi:10.2307/90322 CrossRefGoogle Scholar
  14. French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  15. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in Terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575. doi:10.1002/macp.200500008 CrossRefGoogle Scholar
  16. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y CrossRefGoogle Scholar
  17. Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio-Technology 3:722–726CrossRefGoogle Scholar
  18. Igarashi K (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 334:453Google Scholar
  19. Imai T, Sugiyama J (1998) Nanodomains of I-alpha and I-beta cellulose in algal microfibrils. Macromolecules 31:6275–6279CrossRefGoogle Scholar
  20. Jeoh T, Wilson DB, Walker LP (2002) Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca Cel5A, Cel6B and Cel9A. Biotechnol Prog 18:760–769CrossRefGoogle Scholar
  21. Jeoh T, Ishizawa C, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122CrossRefGoogle Scholar
  22. Jeoh T, Santa-Maria MC, O’Dell PJ (2013) Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohydrate Polymers 97:581–586. doi:10.1016/j.carbpol.2013.05.027 CrossRefGoogle Scholar
  23. Jung J, Sethi A, Gaiotto T, Han JJ, Jeoh T, Gnanakaran S, Goodwin PM (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 288:24164–24172. doi:10.1074/jbc.M113.455758 CrossRefGoogle Scholar
  24. Kadic A, Palmqvist B, Liden G (2014) Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnol Biofuels 7:77CrossRefGoogle Scholar
  25. Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137(6):1887–1892Google Scholar
  26. Knott BC et al (2013) The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies. J Am Chem Society 136:321–329. doi:10.1021/ja410291u CrossRefGoogle Scholar
  27. Kongruang S, Han MJ, Breton CIG, Penner MH (2004) Quantitative analysis of cellulose-reducing ends. Appl Biochem Biotech 113–116:213–231CrossRefGoogle Scholar
  28. Kurasin M, Valjamae P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177. doi:10.1074/jbc.M110.161059 CrossRefGoogle Scholar
  29. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249. doi:10.1007/s10086-009-1029-1 CrossRefGoogle Scholar
  30. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I-Beta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  31. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi:10.1021/ja037055w CrossRefGoogle Scholar
  32. O’Dell PJ (2013) Understanding the role of physical properties of cellulose on its hydrolyzability by cellulases. University of California, DavisGoogle Scholar
  33. Oh SY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. doi:10.1016/j.carres.2005.08.007 CrossRefGoogle Scholar
  34. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16:641–647CrossRefGoogle Scholar
  35. Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefGoogle Scholar
  36. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasability of a billion-ton annual supply. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  37. Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P (2011) A kinetic model for the burst phase of processive cellulases. FEBS J 278:1547–1560. doi:10.1111/j.1742-4658.2011.08078.x CrossRefGoogle Scholar
  38. Rasband WS (1997–2012) ImageJ. National Institutes of Health, BethesdaGoogle Scholar
  39. Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high loadings. Cellulose 18:759–773. doi:10.1007/s10570-011-9509-z CrossRefGoogle Scholar
  40. Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007. doi:10.1021/bm100366h CrossRefGoogle Scholar
  41. Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Analyt Chem 25(11):1656–1661Google Scholar
  42. Shang BZ, Chu J-W (2014) kinetic modeling at single-molecule resolution elucidates the mechanisms of cellulase synergy. ACS Catal 4:2216–2225. doi:10.1021/cs500126q CrossRefGoogle Scholar
  43. Shang BZ, Chang R, Chu JW (2013) Systems-level modeling with molecular resolution elucidates the rate-limiting mechanisms of cellulose decomposition by cellobiohydrolases. J Biol Chem 288:29081–29089. doi:10.1074/jbc.M113.497412 CrossRefGoogle Scholar
  44. Shibafuji Y et al (2014) Single-molecule imaging analysis of elementary reaction steps of trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. J Biol Chem 289:14056–14065. doi:10.1074/jbc.M113.546085 CrossRefGoogle Scholar
  45. Skovgaard PA et al (2014) The role of endoglucanase and endoxylanase in liquefaction of hydrothermally pretreated wheat straw. Biotechnol Prog. doi:10.1002/btpr.1893 Google Scholar
  46. Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/ma00009a050 CrossRefGoogle Scholar
  47. Sugiyama J, Vuong R, Chanzy H (1991b) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  48. Suslick KS (1990) Sonochemistry. Science 247:1439–1445. doi:10.2307/2874223 CrossRefGoogle Scholar
  49. Teeri TT, Koivula A (1995) Cellulose degradation by native and engineered fungal cellulases carbohydrates. Europe 12:28–33Google Scholar
  50. Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983. doi:10.1007/s10295-010-0870-y CrossRefGoogle Scholar
  51. Tozzi EJ et al (2014) Effect of fiber structure on yield stress during enzymatic conversion of cellulose. AIChE J 60:1582–1590. doi:10.1002/aic.14374 CrossRefGoogle Scholar
  52. Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655. doi:10.1046/j.1529-8817.1999.3540635.x CrossRefGoogle Scholar
  53. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sorlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides science 330:219–222. doi:10.1126/science.1192231 Google Scholar
  54. Valjamae P, Sild V, Pettersson G, Johansson G (1998) The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface—erosion model. Eur J Biochem 253:469–475CrossRefGoogle Scholar
  55. Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001CrossRefGoogle Scholar
  56. Xu F, Ding H, Tejirian A (2009) Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb Technol 45:203–209. doi:10.1016/j.enzmictec.2009.06.002 CrossRefGoogle Scholar
  57. Zhang YHP, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515. doi:10.1021/bm049235j CrossRefGoogle Scholar
  58. Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94:888–898. doi:10.1002/bit.20906 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Patrick J. O’Dell
    • 1
  • Akshata R. Mudinoor
    • 1
  • Sanjai J. Parikh
    • 2
  • Tina Jeoh
    • 1
  1. 1.Biological and Agricultural Engineering DepartmentUniversity of CaliforniaDavisUSA
  2. 2.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations