, Volume 22, Issue 3, pp 1541–1563 | Cite as

Evidence for differential interaction mechanism of plant cell wall matrix polysaccharides in hierarchically-structured bacterial cellulose

  • Marta Martínez-Sanz
  • Patricia Lopez-Sanchez
  • Michael J. Gidley
  • Elliot P. Gilbert
Original Paper


The interaction mechanism of two plant cell wall polysaccharides, arabinoxylan and xyloglucan, with cellulose has been investigated by means of bacterial cellulose fermentation to mimic the cell wall biosynthesis process. The combination of small angle scattering techniques with XRD and SEM has enabled the identification of different structural features comprising hierarchically-assembled bacterial cellulose, i.e. cellulose microfibrils and ribbons. The SANS results have been described by a core–shell formalism, which accounts for the presence of regions with different solvent accessibility and supports the existence of microfibril sub-structure within the ribbons. Additionally, SAXS and XRD results suggest that the microfibril packing and crystalline structure are not affected by arabinoxylan, while xyloglucan interferes with the crystallization and assembly processes, resulting in less crystalline Iβ-rich microfibrils. This specific interaction mechanism is therefore crucial for the cellulose microfibril cross-linking effect of xyloglucan in plant cell walls. It is proposed that the distinct interaction mechanisms identified have their origin in the differential structural role of arabinoxylan and xyloglucan in plant cell walls.


Small angle scattering Neutron scattering X-ray scattering Cellulose Plant cell wall 



The authors thank Dr. Joel Davis (ANSTO, Institute of Materials Engineering) for performing the SEM imaging and Dr. Tracey Hanley (ANSTO, Institute of Materials Engineering) for her valuable assistance with the XRD experiments. Dongjie Wang is acknowledged for composites production and SEM of fresh samples. M.M.S. would like to acknowledge a postdoctoral fellowship jointly funded by ANSTO and the ARC Centre of Excellence in Plant Cell Walls.

Supplementary material

10570_2015_614_MOESM1_ESM.pdf (198 kb)
Supplementary material 1 (PDF 197 kb)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–41Google Scholar
  2. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2001) Structure of acetobacter cellulose composites in the hydrated state. Int J Biol Macromol 29:193–202CrossRefGoogle Scholar
  3. Astley OM, Chanliaud E, Donald AM, Gidley MJ (2003) Tensile deformation of bacterial cellulose composites. Int J Biol Macromol 32:28–35CrossRefGoogle Scholar
  4. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRefGoogle Scholar
  5. Blazek J, Gilbert EP (2011) Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: a review. Carbohydr Polym 85:281–293CrossRefGoogle Scholar
  6. Bootten TJ, Harris PJ, Melton LD, Newman RH (2008) WAXS and C-13 NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan. Carbohydr Res 343:221–229CrossRefGoogle Scholar
  7. Brown RM Jr (1996) The biosynthesis of cellulose. J Macromol Sci Pure Appl Chem 33:1345–1373CrossRefGoogle Scholar
  8. Burton RA, Gidley MJ, Fincher GB (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol 6:724–732CrossRefGoogle Scholar
  9. Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102CrossRefGoogle Scholar
  10. Cerclier CV, Guyomard-Lack A, Cousin F, Jean B, Bonnin E, Cathala B, Moreau C (2013) Xyloglucan–cellulose nanocrystal multilayered films: effect of film architecture on enzymatic hydrolysis. Biomacromolecules 14:3599–3609CrossRefGoogle Scholar
  11. Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35CrossRefGoogle Scholar
  12. Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer 45:1063–1071CrossRefGoogle Scholar
  13. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861CrossRefGoogle Scholar
  14. Fan L, Degen M, Bendle S, Grupido N, Ilavsky J (2010) The absolute calibration of a small-angle scattering instrument with a laboratory X-ray source. J Phys Conf Ser. doi: 10.1088/1742-6596/247/1/012005
  15. Fernandes AN et al (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203CrossRefGoogle Scholar
  16. Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70Google Scholar
  17. Fink HP, Purz HJ, Bohn A, Kunze J (1997) Investigation of the supramolecular structure of never dried bacterial cellulose. Macromol Symp 120:207–217CrossRefGoogle Scholar
  18. Geitmann A (2010) Mechanical modeling and structural analysis of the primary plant cell wall. Curr Opin Plant Biol 13:693–699CrossRefGoogle Scholar
  19. Gilbert EP, Schulz JC, Noakes TJ (2006) ‘Quokka’-the small-angle neutron scattering instrument at OPAL. Phys B 385–386:1180–1182CrossRefGoogle Scholar
  20. Gilbert EP, Lopez-Rubio A, Gidley MJ (2012) Characterisation techniques in food materials science. In: Bhesh B, Yrjo R (eds) Food materials science and engineering. Wiley-Blackwell, p 52–93Google Scholar
  21. Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88:547–557CrossRefGoogle Scholar
  22. Gu J, Catchmark JM (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627CrossRefGoogle Scholar
  23. Gu J, Catchmark JM (2014) Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films. Cellulose 21:275–289CrossRefGoogle Scholar
  24. Haigler CH, Brown RM Jr, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210:903–906CrossRefGoogle Scholar
  25. Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94:64–69CrossRefGoogle Scholar
  26. He J et al (2014) Controlled incorporation of deuterium into bacterial cellulose. Cellulose 21:927–936CrossRefGoogle Scholar
  27. Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13:511–518CrossRefGoogle Scholar
  28. Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose—III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213CrossRefGoogle Scholar
  29. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  30. Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42:347–353CrossRefGoogle Scholar
  31. Jungnikl K, Paris O, Fratzl P, Burgert I (2008) The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose 15:407–418CrossRefGoogle Scholar
  32. Kennedy CJ, Cameron GJ, Sturcova A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246CrossRefGoogle Scholar
  33. Kent MS et al (2010) Study of enzymatic digestion of cellulose by small angle neutron scattering. Biomacromolecules 11:357–368CrossRefGoogle Scholar
  34. Khandelwal M, Windle AH (2014) Small angle X-ray study of cellulose macromolecules produced by tunicates and bacteria. Int J Biol Macromol 68:215–217CrossRefGoogle Scholar
  35. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900CrossRefGoogle Scholar
  36. Koizumi S, Yue Z, Tomita Y, Kondo T, Iwase H, Yamaguchi D, Hashimoto T (2008) Bacterium organizes hierarchical amorphous structure in microbial cellulose. Eur Phys J E 26:137–142CrossRefGoogle Scholar
  37. Koizumi S, Tomita Y, Kondo T, Hashimoto T (2009) What factors determine hierarchical structure of microbial cellulose—interplay among physics, chemistry and biology. Macromol Symp 279:110–118CrossRefGoogle Scholar
  38. Langan P et al (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68CrossRefGoogle Scholar
  39. Lopez-Rubio A, Gilbert EP (2009) Neutron scattering: a natural tool for food science and technology research. Trends Food Sci Technol 20:576–586CrossRefGoogle Scholar
  40. Martínez-Sanz M, Lopez-Rubio A, Lagaron J (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85:228–236CrossRefGoogle Scholar
  41. Matthews JF et al (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152CrossRefGoogle Scholar
  42. McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16:1047–1055CrossRefGoogle Scholar
  43. Mikkelsen D, Gidley MJ (2011) Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation (Clifton, NJ). Methods Mol Biol 715:197–208CrossRefGoogle Scholar
  44. Mikkelsen D, Gidley MJ, Williams BA (2011) In vitro fermentation of bacterial cellulose composites as model dietary fibers. J Agric Food Chem 59:4025–4032CrossRefGoogle Scholar
  45. Mikkelsen D, Flanagan BM, Wilson SM, Bacic A, Gidley MJ (2015) Bacterial cellulose composites suggest arabinoxylans and (1 → 3)(1 → 4)-β-d-glucans are not functional equivalents of either xyloglucans or pectins in plant cell walls. Biomacromolecules (in press)Google Scholar
  46. Olsson RT, Kraemer R, Lopez-Rubio A, Torres-Giner S, Ocio MJ, Lagaron JM (2010) Extraction of microfibrils from bacterial cellulose networks for electrospinning of anisotropic biohybrid fiber yarns. Macromolecules 43:4201–4209CrossRefGoogle Scholar
  47. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943CrossRefGoogle Scholar
  48. Park YB, Lee CM, Kafle K, Park S, Cosgrove DJ, Kim SH (2014) Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Biomacromolecules 15:2718–2724CrossRefGoogle Scholar
  49. Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639CrossRefGoogle Scholar
  50. Penttilä PA et al (2010) Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose. Biomacromolecules 11:1111–1117CrossRefGoogle Scholar
  51. Penttilä PA et al (2013) Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis. Cellulose 20:1031–1040CrossRefGoogle Scholar
  52. Pingali SV et al (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329–2335CrossRefGoogle Scholar
  53. Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79:2173–2184CrossRefGoogle Scholar
  54. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefGoogle Scholar
  55. Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc Natl Acad Sci 95:2267–2272CrossRefGoogle Scholar
  56. Thomas LH et al (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476CrossRefGoogle Scholar
  57. Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224CrossRefGoogle Scholar
  58. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261CrossRefGoogle Scholar
  59. Tokoh C, Takabe K, Sugiyama J, Fujita M (2002a) CP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides. Cellulose 9:351–360CrossRefGoogle Scholar
  60. Tokoh C, Takabe KJ, Fujita M (2002b) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9:65–74CrossRefGoogle Scholar
  61. Uhlin KI, Atalla RH, Thompson NS (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2:129–144CrossRefGoogle Scholar
  62. Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (I-alpha/I-beta) system. J Appl Polym Sci 49:1491–1496CrossRefGoogle Scholar
  63. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRefGoogle Scholar
  64. Weimer PJ, Hackney JM, Jung H-JG, Hatfield RD (2000) Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability. J Agric Food Chem 48:1727–1733CrossRefGoogle Scholar
  65. White AR, Brown RM Jr (1981) Enzymatic hydrolysis of cellulose: visual characterization of the process. Proc Natl Acad Sci USA 78:1047–1051CrossRefGoogle Scholar
  66. Whitney SE, Brigham JE, Darke AH, Reid JS, Gidley MJ (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504CrossRefGoogle Scholar
  67. Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309CrossRefGoogle Scholar
  68. Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93:1402–1414CrossRefGoogle Scholar
  69. Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3:229–242CrossRefGoogle Scholar
  70. Zhang K (2013) Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy. Appl Microbiol Biotechnol 97:4353–4359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marta Martínez-Sanz
    • 1
    • 2
  • Patricia Lopez-Sanchez
    • 2
  • Michael J. Gidley
    • 2
  • Elliot P. Gilbert
    • 1
  1. 1.Bragg InstituteAustralian Nuclear Science and Technology OrganisationKirrawee DCAustralia
  2. 2.ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food SciencesUniversity of QueenslandSt. Lucia, BrisbaneAustralia

Personalised recommendations