Skip to main content
Log in

Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The oxidation of cellulose nanocrystal (CNC) by sodium periodate can generate aldehyde functions for crosslinking reactions or for further modification, which can extend the range of applications of CNC. In this paper, the effects of reaction conditions during the periodate oxidation of CNC, such as oxidant concentration, pH, temperature and oxidation time on the oxidized CNC yield and the aldehyde content, were investigated and an optimized reaction condition was identified. The generation of aldehyde groups on the CNC was confirmed by Fourier transform infrared spectroscopy analysis, and the decreased crystalline index was observed by X-ray diffraction. The transmission electron microscope observation showed the morphological changes of CNC after the oxidation. The oxidized CNC was used as a strength additive to paper, and the results showed that the dry tensile index was 32.6 % higher than the control sample, and the wet tensile index was reached to 3.08 N.m/g, at the oxidized CNC dosage of 1.2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15:303–314

    Article  CAS  Google Scholar 

  • Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764

    Article  CAS  Google Scholar 

  • Buchhammer HM, Mende M, Oelmann M (2003) Formation of mono-sized polyelectrolyte complex dispersions: effects of polymer structure, concentration and mixing conditions. Coll Surf A-Physicochem Eng Asp 218(1–3):151–159

    Article  CAS  Google Scholar 

  • Calvini P, Conio G, Princi E, Vicini S, Pedemonte E (2006) Viscometric determination of dialdehyde content in periodate oxycellulose Part II. Topochemistry of oxidation. Cellulose 13(5):571–579

    Article  CAS  Google Scholar 

  • Crisp MT, Riehle RJ (2009) Wet-strengthening of paper in neutral pH papermaking conditions. In: Thorn I, Au CO (eds) Applications of wet-end paper chemistry. Eka Chemicals Ltd., Somerset, UK, pp 147–169. doi:10.1007/978-1-4020-6038-0

  • Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19(6):2069–2079

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Farley CE (1987) Advanced topics in wet-end chemistry seminar. TAPPI PRESS, Atlanta, p 191

    Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

  • Gong R, Zhang J, Zhu J, Wang J, Lai Q, Jiang B (2013) Loofah sponge activated by periodate oxidation as a carrier for covalent immobilization of lipase. Korean J Chem Eng 30(8):1620–1625

    Article  CAS  Google Scholar 

  • Guo J, Ge L, Li X, Mu C, Li D (2014) Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocoll 39:243–250

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585

    Article  CAS  Google Scholar 

  • Hiraoki R, Fukuzumi H, Ono Y, Saito T, Isogai A (2014) SEC-MALLS analysis of TEMPO-oxidized celluloses using methylation of carboxyl groups. Cellulose 21(1):167–176

    Article  CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46(23):7830–7837

    Article  CAS  Google Scholar 

  • Ioelovich M, Leykin A (2004) Nano-cellulose and its application. J SITA 6(3):17–24

    CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164

    Article  CAS  Google Scholar 

  • Jahan MS, Saeed A, He Z, Ni Y (2011) Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18:451–459

    Article  CAS  Google Scholar 

  • Keshk SMAS (2008) Homogenous reactions of cellulose from different natural sources. Carbohydr Polym 74:942–945

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2001) Ion-exchange chromatography by dicarboxyl cellulose gel. J Chromatogr 919:29–37

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492

    Article  CAS  Google Scholar 

  • Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56(1):7–10

    Article  CAS  Google Scholar 

  • Kurihara T, Isogai A (2014) Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose 21(1):291–299

    Article  CAS  Google Scholar 

  • Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84:881–886

  • Liu ZH, Fatehi P, Sadeghi S, Ni YH (2011) Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour Technol 102(20):9613–9618

    Article  CAS  Google Scholar 

  • Liu X, Wang L, Song X, Song H, Zhao JR, Wang S (2012) A kinetic model for oxidative degradation of bagasse pulp fiber by sodium periodate. Carbohydr Polym 90:218–223

    Article  CAS  Google Scholar 

  • Nikolic T, Kostic M, Praskalo J, Pejic B, Petronijevic Z, Skundric P (2010) Sodium periodate oxidized cotton yarn as carrier for immobilization of trypsin. Carbohydr Polym 82:976–981

    Article  CAS  Google Scholar 

  • Pan S, Ragauskas AJ (2014) Enhancement of nanofibrillation of softwood cellulosic fibers byoxidation and sulfonation. Carbohydr Polym 111:514–523

    Article  CAS  Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57(14):6305–6317

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    Article  CAS  Google Scholar 

  • Sabzalian Z, Alam MN, van de Ven TGM (2014) Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers. Cellulose 21:1381–1393

    CAS  Google Scholar 

  • Saito T (2005) A novel method to improve wet strength of paper. Tappi J 4(3):3–8

    CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Coll Surf A-Physicochem Eng Asp 289:219–225

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190

    Article  CAS  Google Scholar 

  • Sirviö J, Hyvakko U, Liimatainen H, Niinimäki J, Hormi O (2011a) Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr Polym 83(3):1293–1297

    Article  Google Scholar 

  • Sirviö J, Liimatainen H, Niinimäki J, Hormi O (2011b) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265

    Article  Google Scholar 

  • Taipina MDO, Ferrarezi MMF, Yoshida IVP, Gonçalves MDC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1):217–226

    Article  Google Scholar 

  • Thygesen A, Oddershede J, Lilhot H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibers. Cellulose 12:563–576

    Article  CAS  Google Scholar 

  • Varma AJ, Kulkarni MP (2002) Oxidation of cellulose under controlled conditions. Polym Degrad Stab 77(1):25–27

    Article  CAS  Google Scholar 

  • Visanko M, Liimatainen H, Sirviö JA, Heiskanen JP, Niinimäki J, Hormi O (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer. Biomacromolecules 15:2769–2775

    CAS  Google Scholar 

  • Yang J, Han C, Duan J, Xu F, Sun R (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207

    Article  CAS  Google Scholar 

  • Yuen SN, Choi SM, Phillips DL, Ma CY (2009) Raman and FTIR spectroscopic study of carboxymethylated nonstarch polysaccharides. Food Chem 114:1091–1098

    Article  CAS  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170

    Article  CAS  Google Scholar 

  • Zhang X, Tanaka H (1999) Synthesis of polymers containing isocyanate groups and use of polymers as paper dry and wet strength additives. J Wood Sci 45:425–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Canada Research Chairs Program, and the Tianjin Municipal Science and Technology Commission (Grant No. 12ZCZDGX01100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingxi Hou or Yonghao Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Hou, Q., Liu, Z. et al. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22, 1135–1146 (2015). https://doi.org/10.1007/s10570-015-0575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0575-5

Keywords

Navigation