Skip to main content

Advertisement

Log in

Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Transparent cellulose films from 2,2,6,6-tetramethylpiperidine-1-oxyl radical oxidized cellulose nanocrystals (TOCNs) and 64 wt% sulfuric acid treated cellulose nanocrystals (SACNs) were prepared from bleached wood pulp. Film morphology, optical, mechanical, thermal, and surface wettability properties were characterized and compared. The results showed that TOCNs and SACNs had different average length (200.7 vs. 163.0 nm), diameter (5.8 vs. 15.6 nm), and aspect ratio (34.4 vs. 10.4). Compared with the SACN film, TOCN films exhibited higher optical transmittance (98.4 % at 900 nm) and larger tensile strength (236.5 MPa). SACN films exhibited better thermal stability (Tonset = 239 °C), higher crystallinity (73.4 %) and lower coefficient of thermal expansion (CTE = 8.38 ppm/k). Additionally, both films demonstrated good surface wettability. The results indicate that the TOCN and SACN films could be considered as a substrate material to replace traditional glass and plastic substrates for the next generation “Green” electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080

    Article  CAS  Google Scholar 

  • Chen L-F, Huang Z-H, Liang H-W, Gao H-L, Yu S-H (2014) Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Adv Funct Mater 24(32):5104–5111

  • Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64

    Article  CAS  Google Scholar 

  • Chin SF, Binti Romainor AN, Pang SC (2014) Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Mater Lett 115:241–243

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • French A, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177

    Article  CAS  Google Scholar 

  • Gómez C, Zuluaga R, Putaux J-L, Mondragon I, Castro C, Gañán P (2012) Surface free energy of films of alkali-treated cellulose microfibrils from banana rachis. Compos Interfaces 19(1):29–37

    Article  Google Scholar 

  • Good RJ (1992) Contact angle, wetting, and adhesion: a critical review. J Adhes Sci Technol 6(12):1269–1302

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5):1529–1540

    Article  CAS  Google Scholar 

  • Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8(1):29–33

    Article  CAS  Google Scholar 

  • Kimura M, Qi Z-D, Fukuzumi H, Kuga S, Isogai A (2014) Mesoporous structures in never-dried softwood cellulose fibers investigated by nitrogen adsorption. Cellulose 21(5):3193–3201

    Article  CAS  Google Scholar 

  • Kontturi E, Tammelin T, Osterberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35(12):1287–1304

    Article  CAS  Google Scholar 

  • Li Z, Yao C, Yu Y, Cai Z, Wang X (2014) Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated Tio2 photoanodes. Adv Mater 26(14):2262–2267

    Article  CAS  Google Scholar 

  • Liu J, Yang C, Wu H, Lin Z, Zhang Z, Wang R, Li B, Kang F, Shi L, Wong CP (2014) Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy Environ Sci 7(11):3674–3682

  • Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Nguyen T, Johns WE (1978) Polar and dispersion force contributions to the total surface free energy of wood. Wood Sci Technol 12(1):63–74

    Article  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598

    Article  CAS  Google Scholar 

  • Nogi M, Komoda N, Otsuka K, Suganuma K (2013) Foldable nanopaper antennas for origami electronics. Nanoscale 5(10):4395–4399

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

  • Purandare S, Gomez EF, Steckl AJ (2014) High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films. Nanotechnology 25(9):094012

    Article  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Sarimsakov A, Khakimov E (2000) Toxicological characterization of a novel inductor of interferon, PK-43, synthesized on cotton cellulose. Likars’ ka sprava/Ministerstvo okhorony zdorov’ia Ukrainy 4:148–150

    Google Scholar 

  • Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors Based on Porous Cellulose Nanocrystal–Poly(vinyl Alcohol) Scaffolds. ACS Appl Mater Interfaces 6(15):12674–12683

    Article  CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sun X, Chen W, Du Z, Bao X, Song G, Guo K, Wang N, Yang R (2013) Synthesis and photovoltaic properties of novel 3,4-ethylenedithiathiophene-based copolymers for organic solar cells. Polym Chem 4(5):1317–1322

    Article  CAS  Google Scholar 

  • Toussaint A, Luner P (1993) The wetting properties of grafted cellulose films. J Adhes Sci Technol 7(6):635–648

    Article  CAS  Google Scholar 

  • Valentini L, Bittolo Bon S, Cardinali M, Fortunati E, Kenny JM (2014) Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Mater Lett 126:55–58

    Article  CAS  Google Scholar 

  • Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sources 249:148–155

    Article  CAS  Google Scholar 

  • Wolfberger A, Petritz A, Fian A, Herka J, Schmidt V, Stadlober B, Kargl R, Spirk S, Griesser T (2014) Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications. Cellulose 22(1):717–727

  • Wu S (1971) Calculation of interfacial tension in polymer systems. J Polym Sci Part C Polym Symp 34(1):19–30

    Article  Google Scholar 

  • Zaini LH, Jonoobi M, Tahir PM, Karimi S (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J BiomaterNanobiotechnol 4:37–44

  • Zhu H, Narakathu BB, Fang Z, Tausif Aijazi A, Joyce M, Atashbar M, Hu L (2014) A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6(15):9110–9115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Louisiana State University Economic Development Assistantship Program, by the Louisiana Board of Regents (LEQSF-EPS(2014)-OPT-IN-37) and by the Key Biomass Energy Laboratory of Henan Province, Henan, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Wu or Tingzhou Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wu, Q., Ren, S. et al. Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22, 1123–1133 (2015). https://doi.org/10.1007/s10570-015-0574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0574-6

Keywords

Navigation