Skip to main content
Log in

In-situ preparation and characterization of highly oriented graphene oxide/cellulose-poly(butylene succinate) ternary composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Graphene oxide/cellulose-poly(butylene succinate) (GO/CE-PBS) films with excellent mechanical properties were prepared via the help of ionic liquid. During the process of preparation of the composite films, PBS as the toughening material was added to the composite with the dissolution of CE. The X-ray diffraction results showed that GO was completely exfoliated in the CE-PBS matrix. Fourier-transform infrared spectroscopy verified that new hydrogen bonds were formed between CE chains and GO sheets because of the hydrophilic groups on the GO sheets. Morphological analysis of composite films showed that PBS existed in the CE matrix in the form of microparticles, leading to a rough fractured surface. Tensile tests indicated that the elongation at break of CE was significantly improved with a low PBS content. The tensile strength and Young’s modulus of GO/CE-PBS ternary composite films with only 1 wt% GO were increased by 188 and 320 % compared to the pure CE films, respectively; meanwhile, the elongation at break of the composite films was 9.3, which was also higher than that of pure CE films. SEM and Halpin-Tsai model analysis showed that GO sheets were likely to be arranged parallel to the film because of the large lateral thickness ratio, which may determine the orientation of CE chains and result in significant improvement of the mechanical properties of CE films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Affdl JC, Kardos JL (1976) The Halpin-Tsai equations, a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  • Biganska O, Navard P (2005) Kinetics of precipitation of cellulose from cellulose-NMMO-water solutions. Biomacromolecules 6:1948–1953

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci B Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  • Cao Y, Wu J, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohydr Polym 69:665–672

    Article  CAS  Google Scholar 

  • Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs); a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  • Cao Y, Li H, Zhang J (2011) Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind Eng Chem Res 50:7808–7814

    Article  CAS  Google Scholar 

  • El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym Plast Technol Eng 43:797–820

    Article  CAS  Google Scholar 

  • Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X, Hiraki T (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon 46:1256–1258

    Article  CAS  Google Scholar 

  • Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013a) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67

    Article  CAS  Google Scholar 

  • Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang F (2013b) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251

    Article  CAS  Google Scholar 

  • Han D, Yan L, Chen W, Li W, Bangal PR (2011) Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohydr Polym 83:966–972

    Article  CAS  Google Scholar 

  • Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF (2007) Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym 70:451–458

    Article  CAS  Google Scholar 

  • Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Memb Sci 409–410:156–163

    Article  Google Scholar 

  • Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Compos Sci Technol 70:1564–1570

    Article  CAS  Google Scholar 

  • Ishii D, Tatsumi D, Matsumoto T (2008) Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohydr Res 343:919–928

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose, the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97

    Article  CAS  Google Scholar 

  • Ouyang W, Sun J, Memon J, Wang C, Geng J, Huang Y (2013) Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 62:501–509

    Article  CAS  Google Scholar 

  • Pang H, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980–1988

    Article  CAS  Google Scholar 

  • Peng H, Meng L, Niu L, Lu Q (2012) Simultaneous reduction and surface functionalization of graphene oxide by natural cellulose with the assistance of the ionic liquid. J Phys Chem C 116:16294–16299

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  • Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM (2011a) Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci 121:3167–3174

    Article  CAS  Google Scholar 

  • Ren PG, Yan DX, Ji X, Chen T, Li ZM (2011b) Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22:055705

    Article  Google Scholar 

  • Ren PG, Wang H, Huang HD, Yan D X, and Li ZM (2014). Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high‐density polyethylene nanocomposites, A comparative study. J Appl Polym Sci, 131(2):39803

  • Valentini L, Cardinali M, Fortunati E, Torre L, Kenny JM (2013) A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater Lett 105:4–7

    Article  CAS  Google Scholar 

  • Veerapandian M, Lee MH, Krishnamoorthy K, Yun K (2012) Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 50:4228–4238

    Article  CAS  Google Scholar 

  • Wang H, Ren PG, Chen YH, Yan DX, Li ZM, and Xu L (2014). Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene. J Appl Polym Sci, 131(6):40000

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  • Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698

    Article  CAS  Google Scholar 

  • Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788

    Article  CAS  Google Scholar 

  • Yang D, Zhong LX, Yuan TQ, Peng XW, Sun RC (2013) Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind Crops Prod 43:141–149

    Article  CAS  Google Scholar 

  • Yun S, Kim J (2009) Covalently bonded multi-walled carbon nanotubes-cellulose electro-active paper actuator. Sens Actuators A 154:73–78

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid; a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20):8272–8277

    Article  CAS  Google Scholar 

  • Zhang J, Cao YW, Feng JC, Wu PY (2012a) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116(14):8063–8068

    Article  CAS  Google Scholar 

  • Zhang LB, Wang JQ, Wang HG, Xu Y, Wang ZF, Li ZP, Yang SR (2012b) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos A Appl Sci Manuf 43:1537–1545

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (sklpme 2014-4-27) for the financial support from the National Foundation of China (grant nos. 51273161 and 51208043) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-Gang Ren or Zhong-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, CY., Ren, PG., Zhang, ZP. et al. In-situ preparation and characterization of highly oriented graphene oxide/cellulose-poly(butylene succinate) ternary composite films. Cellulose 22, 1243–1251 (2015). https://doi.org/10.1007/s10570-015-0559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0559-5

Keywords

Navigation