Skip to main content
Log in

Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocomposites of polylactide (PLA) and bacterial cellulose nanowhiskers (BCNW) with improved properties were obtained through melt compounding. Prior to melt processing, and with the aim of improving BCNW dispersion, lactic acid oligomers (OLLA) were in situ polymerized in the presence of the nanofiller (both freeze-dried and partially hydrated). This in situ polymerization reaction enhanced the compatibilization between hydrophilic cellulose and hydrophobic PLA, even leading to chemical grafting of the OLLA onto the surface of BCNW, when this was used in a partially hydrated form. The optimized dispersion attained through this pre-incorporation strategy was confirmed by comparison with materials obtained through direct melt compounding of PLA with BCNW. Differential scanning calorimetry experiments showed that although cellulose content had not effect on melting temperatures, the degree of crystallinity was significantly affected. Addition of grafted BCNW also resulted in improved mechanical properties increasing the elastic modulus and tensile strength up to 52 and 31 %, respectively, mainly ascribed to the promotion of filler–filler and filler–matrix interactions. Moreover, the developed nanocomposites showed improvements in the water and oxygen barrier properties (measured at 80 % RH), respectively, which make them attractive for food packaging applications. This could be explained by well-dispersed nanocrystals acting as blocking agents within the polymeric matrix, reducing the diffusion through the nanocomposite films and, hence, the water and oxygen permeability. Therefore, this work offers a new route for incorporating well dispersed nanocellulose within a hydrophobic PLA matrix, overcoming the dispersion problems that this entails, especially when working with melt compounding methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) An effect of lactic acid oligomers on the barrier properties of polylactide. J Mater Sci. doi:10.1007/s10853-013-7929-x

    Google Scholar 

  • Auras R, Harte B, Selke S (2004a) Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. J Appl Polym Sci 92(3):1790–1803. doi:10.1002/app.20148

    Article  CAS  Google Scholar 

  • Auras R, Harte B, Selke S (2004b) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  Google Scholar 

  • Braun B, Dorgan JR, Knauss DM (2006) Reactively compatibilized cellulosic polylactide microcomposites. J Polym Environ 14(1):49–58

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13(7):2013–2019

    Article  CAS  Google Scholar 

  • Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658

    Article  CAS  Google Scholar 

  • Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML (2010a) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125. doi:10.1016/j.polymdegradstab.2009.11.045

    Article  CAS  Google Scholar 

  • Carrasco F, Pags P, Gámez-Pérez J, Santana OO, Maspoch ML (2010b) Kinetics of the thermal decomposition of processed poly(lactic acid). Polym Degrad Stab 95(12):2508–2514. doi:10.1016/j.polymdegradstab.2010.07.039

    Article  CAS  Google Scholar 

  • Chun KS, Husseinsyah S, Osman H (2012) Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. J Polym Res. doi:10.1007/s10965-012-9859-8

    Google Scholar 

  • Chun KS, Husseinsyah S, Osman H (2013) Properties of coconut shell powder-filled polylactic acid ecocomposites: effect of maleic acid. Polym Eng Sci 53(5):1109–1116. doi:10.1002/pen.23359

    Article  CAS  Google Scholar 

  • Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polymer J 49(10):3144–3154. doi:10.1016/j.eurpolymj.2013.07.017

    Article  Google Scholar 

  • Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95(11):2200–2206. doi:10.1016/j.polymdegradstab.2010.02.034

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM, Donescu D (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32(6):976–985. doi:10.1002/pc.21116

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57. doi:10.1016/j.ijbiomac.2010.09.013

    Article  CAS  Google Scholar 

  • George J, Sajeevkumar VA, Ramana KV, Sabapathy SN, Siddaramaiah (2012) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J Mater Chem 22(42):22433–22439

    Article  CAS  Google Scholar 

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12(7):2456–2465

    Article  CAS  Google Scholar 

  • Gorrasi G, Vittoria V, Murariu M, Da Silva Ferreira A, Alexandre M, Dubois P (2008) Effect of filler content and size on transport properties of water vapor in PLA/calcium sulfate composites. Biomacromolecules 9(3):984–990

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125(Suppl. 2):E10–E19. doi:10.1002/app.36373

    Article  CAS  Google Scholar 

  • Hertlein J, Singh RP, Weisser H (1995) Prediction of oxygen transport parameters of plastic packaging materials from transient state measurements. J Food Eng 24(4):543–560

    Article  Google Scholar 

  • Hiltner A, Liu RYF, Hu YS, Baer E (2005) Oxygen transport as a solid-state structure probe for polymeric materials: a review. J Polym Sci Part B Polym Phys 43(9):1047–1063. doi:10.1002/polb.20349

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502

    Article  CAS  Google Scholar 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2011) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47(6):2675–2686

  • Hutchings JB (1999) Food color and appearance. Aspen, Maryland

    Book  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  • Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and Its precursors. Biomacromolecules 12(3):523–532. doi:10.1021/bm101302t

    Article  CAS  Google Scholar 

  • Jamshidi K, Hyon SH, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29(12):2229–2234

    Article  CAS  Google Scholar 

  • Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydr Polym 94(2):822–828

    Article  CAS  Google Scholar 

  • Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2011) Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays. J Appl Polym Sci 122(1):112–125

    Article  CAS  Google Scholar 

  • Kim Y, Jung R, Kim HS, Jin HJ (2009) Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid). Curr Appl Phys 9(1 SUPPL.):S69–S71

    Article  Google Scholar 

  • Koo D, Du A, Palmese GR, Cairncross RA (2012) Moisture management of polylactides: the effect of heat treatment. Polymer 53(5):1115–1123

    Article  CAS  Google Scholar 

  • Kovalenko VI, Mukhamadeeva RM, Maklakova LN, Gustova NG (1994) Interpretation of the IR spectrum and structure of cellulose nitrate. J Struct Chem 34(4):540–547. doi:10.1007/BF00753522

    Article  Google Scholar 

  • Lee JH, Park SH, Kim SH (2013) Preparation of cellulose nanowhiskers and their reinforcing effect in Polylactide. Macromol Res 21(11):1218–1225

  • Li Y, Sun XS (2010) Preparation and characterization of polymer-Inorganic nanocomposites by in situ melt polycondensation of l-lactic acid and surface-hydroxylated MgO. Biomacromolecules 11(7):1847–1855. doi:10.1021/bm100320q

    Article  CAS  Google Scholar 

  • Lönnberg H, Fogelström L, Zhou Q, Hult A, Berglund L, Malmström E (2011) Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(ε-caprolactone) bilayer laminate. Compos Sci Technol 71(1):9–12. doi:10.1016/j.compscitech.2010.09.007

    Article  Google Scholar 

  • Luo YB, Wang XL, Xu DY, Wang YZ (2009) Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl Surf Sci 255(15):6795–6801

    Article  CAS  Google Scholar 

  • Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  • Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219. doi:10.1016/S0032-3861(01)00086-6

    Article  CAS  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011a) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85(1):228–236

    Article  Google Scholar 

  • Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2011b) Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: characterization and method optimization. Cellulose 18(2):335–347

    Article  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2012a) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromolecules 13(11):3887–3899. doi:10.1021/bm301430j

    Article  Google Scholar 

  • Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2012b) Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning. J Appl Polym Sci 124(2):1398–1408. doi:10.1002/app.35052

    Article  Google Scholar 

  • Martínez-Sanz M, Abdelwahab MA, Lopez-Rubio A, Lagaron JM, Chiellini E, Williams TG, Wood DF, Orts WJ, Imam SH (2013a) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polymer J 49(8):2062–2072

    Article  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013b) Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowhiskers by melt compounding (I): morphology and thermal properties. J Appl Polym Sci 128(5):2666–2678

    Article  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013c) Nanocomposites of ethylene vinyl alcohol copolymer with thermally resistant cellulose nanowhiskers by melt compounding (II): water barrier and mechanical properties. J Appl Polym Sci 128(3):2197–2207. doi:10.1002/app.38432

    Google Scholar 

  • Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(l-lactic acid). J Polym Sci Part A Polym Chem 38(9):1673–1679

    Article  CAS  Google Scholar 

  • Peng K, Wang B, Chen S, Zhong C, Wang H (2011) Preparation and properties of polystyrene/bacterial cellulose nanocomposites by in situ polymerization. J Macromol Sci Part B Phys 50(10):1921–1927. doi:10.1080/00222348.2011.556931

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66(13):2187–2196. doi:10.1016/j.compscitech.2005.12.010

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544

    Article  CAS  Google Scholar 

  • Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53(1):58–65

    Article  CAS  Google Scholar 

  • Radjabian M, Kish MH, Mohammadi N (2010) Characterization of poly(lactic acid) multifilament yarns. I. The structure and thermal behavior. J Appl Polym Sci 117(3):1516–1525. doi:10.1002/app.32046

    Article  CAS  Google Scholar 

  • Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72(5):544–549

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71(2):235–244

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Nordqvist D, Hedenqvist M, Lagaron JM (2011) Incorporating amylopectin in poly(lactic acid) by melt blending using poly(ethylene-co-vinyl alcohol) as a thermoplastic carrier. II. Physical properties. J Appl Polym Sci 119(6):3708–3716

    Article  CAS  Google Scholar 

  • Sánchez-García MD, Hilliou L, Lagarón JM (2010) Morphology and water barrier properties of nanobiocomposites of κ/l-hybrid carrageenan and cellulose nanowhiskers. J Agric Food Chem 58(24):12847–12857

    Article  Google Scholar 

  • Shen T, Lu M, Zhou D, Liang L (2012) Effect of reactive blocked polyisocyanate on the properties of solvent cast blends from poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 125(3):2071–2077

    Article  CAS  Google Scholar 

  • Singh S, Gupta RK, Ghosh AK, Maiti SN, Bhattacharya SN (2010) Poly(l-lactic acid)/layered silicate nanocomposite blown film for packaging application: thermal, mechanical and barrier properties. J Polym Eng 30(5–7):361–375

    CAS  Google Scholar 

  • Singh VM, Koo D, Palmese GR, Cairncross RA (2011) Synthesis of polylactide with varying molecular weight and aliphatic content: effect on moisture sorption. J Appl Polym Sci 120(5):2543–2549

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  • Song Y, Tashiro K, Xu D, Liu J, Bin Y (2013) Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite. Polymer (United Kingdom) 54:3417–3425

    CAS  Google Scholar 

  • Tang L, Yin N, Chen S, Ouyang Y, Wang H (2012a) Preparation and characterization flexible conductive PPy/BC nanocomposite membrane. Adv Mater Res 476–478:755–758

    Article  Google Scholar 

  • Tang XZ, Kumar P, Alavi S, Sandeep KP (2012b) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526

    Article  CAS  Google Scholar 

  • Ten E, Jiang L, Wolcott MP (2012) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 90(1):541–550

    Article  CAS  Google Scholar 

  • Vink ETH, Rábago KR, Glassner DA, Gruber PR (2003) Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stab 80(3):403–419

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27(4):855–864

    Article  CAS  Google Scholar 

  • Wondraczek H, Anne Kotiaho A, Pedro Fardim P, Heinze T (2011) Photoactive polysaccharides. Carbohydr Polym 83(3):1048–1061

    Article  CAS  Google Scholar 

  • Wu L, Cao D, Huang Y, Li BG (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49(3):742–748

    Article  CAS  Google Scholar 

  • Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22(31):15732–15739. doi:10.1039/c2jm32373g

    Article  CAS  Google Scholar 

  • Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly(l-lactic acid). J Polym Sci Part B Polym Phys 42(1):25–32

    Article  CAS  Google Scholar 

  • Yu HY, Qin ZY, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21(6):478–484

    Article  Google Scholar 

  • Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89(3):971–978

    Article  CAS  Google Scholar 

  • Zhang J, Tashiro K, Tsuji H, Domb AJ (2008) Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules 41(4):1352–1357

    Article  CAS  Google Scholar 

  • Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65(2):182–184

    Article  Google Scholar 

Download references

Acknowledgments

J. Ambrosio-Martín would like to thank the Spanish Ministry of Economy and Competitiveness for the FPI grant BES-2010-038203. M.J. Fabra is recipient of a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitivity. The authors acknowledge financial support from the MINECO (MAT2012-38947-C02-01 Project) and from the FP7 ECOBIOCAP project. Dr. Luis Cabedo, from Universitat Jaume I, is acknowledged for his support with mechanical testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lagaron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8 kb)

Supplementary material 2 (PDF 729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio-Martín, J., Fabra, M.J., Lopez-Rubio, A. et al. Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose 22, 1201–1226 (2015). https://doi.org/10.1007/s10570-014-0523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0523-9

Keywords

Navigation