Skip to main content
Log in

Spatial, spectral, radiometric, and temporal analysis of polymer-modified paper substrates using fluorescence microscopy

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Optical microscopy has long been recognized as a method to characterize the heterogeneous and complex structure of paper. With fluorescence detection, the functionality has even been extended to provide chemical selectivity, e.g. to determine the distribution of secondary modifications like coatings and fillers throughout a sheet of paper. The full spectrum of capabilities offered by fluorescence microscopy, which is able to deliver information with high spatial, spectral, radiometric, and temporal resolution simultaneously and non-destructively, however has yet to be exploited. With paper more and more coming into focus as a versatile platform for the development of functional devices, static structural and compositional information is no longer sufficient to describe the properties of these systems. Rather, a likewise versatile method is required that delivers spatially resolved, quantitative, sensitive, and, most importantly, also dynamic measurements. Here we show that quantitative widefield and confocal fluorescence microscopy are able to meet this set of demands. In a proof of concept analysis on PMMA-modified microfluidic paper substrates, we exploit all four types of resolution provided by fluorescence microscopy, by analyzing the distribution of rhodamine labeled polymer in relation to calcofluor white labeled cellulose fibres with high selectivity and spatial resolution and by imaging the static and dynamic distribution of a FITC labeled dextran solution inside the polymer coated fibre network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoine C, Nygård P, Gregersen ØW et al (2002) 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation. Nucl Instrum Methods Phys Res Sect A Accel Spectrom, Detect Assoc Equip 490:392–402. doi:10.1016/S0168-9002(02)01003-3

    Article  CAS  Google Scholar 

  • Balu B, Kim J (2009) Design of superhydrophobic paper/cellulose surfaces via plasma enhanced etching and deposition. Contact Angle Wettability 6:4–6

    Google Scholar 

  • Balu B, Kim JS, Breedveld V, Hess DW (2009) Tunability of the adhesion of water drops on a superhydrophobic paper surface via selective plasma etching. J Adhes Sci Technol 23:361–380. doi:10.1163/156856108X383547

    Article  CAS  Google Scholar 

  • Berchtold B (2005) Oberflächengebundene Polymernetzwerke zur Re-Endothelialisierung von porcinen Herzklappenbioprothesen. Dissertation, Albert–Ludwigs–Universität Freiburg

  • Böhm A, Gattermayer M, Trieb C et al (2012) Photo-attaching functional polymers to cellulose fibers for the design of chemically modified paper. Cellulose 20:467–483. doi:10.1007/s10570-012-9798-x

    Article  Google Scholar 

  • Böhm A, Gattermayer M, Carstens F et al (2013) Designing microfabricated paper devices through tailored polymer attachment. I’Anson SJ Trans XVth Fundam Res Symp, pp 599–618

  • Böhm A, Carstens F, Trieb C et al (2014) Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid Nanofluid 16:789–799. doi:10.1007/s10404-013-1324-4

    Article  Google Scholar 

  • Carlmark A, Malmström EE (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4:1740–1745. doi:10.1021/bm030046v

    Article  CAS  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. doi:10.1021/ac901071p

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Lenes M, Johnsen PO, Hult E-L (2009) Computer-assisted scanning electron microscopy of wood pulp fibres: dimensions and spatial distributions in a polypropylene composite. Micron 40:761–768. doi:10.1016/j.micron.2009.04.010

    Article  CAS  Google Scholar 

  • Coltro WKT, de Jesus DP, da Silva JAF et al (2010) Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31:2487–2498. doi:10.1002/elps.201000063

    Article  CAS  Google Scholar 

  • Conrad C, Wünsche A, Tan TH et al (2011) Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nat Methods 8:246–249. doi:10.1038/nmeth.1558

    Article  CAS  Google Scholar 

  • Cybulski JS, Clements J, Prakash M (2014) Foldscope: origami-based paper microscope. PLoS ONE 9(6):e98781

  • Deiss F, Mazzeo A, Hong E et al (2013) Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. Anal Chem 85:8085–8094. doi:10.1021/ac400161j

    Article  CAS  Google Scholar 

  • Derda R, Laromaine A, Mammoto A et al (2009) Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci USA 106:18457–18462. doi:10.1073/pnas.0910666106

    Article  CAS  Google Scholar 

  • Derda R, Tang SKY, Laromaine A et al (2011) Multizone paper platform for 3D cell cultures. PLoS ONE 6:e18940. doi:10.1371/journal.pone.0018940

  • Dickson A (2000) Quantitative analysis of paper cross-sections. Appita J 53:292–295

    CAS  Google Scholar 

  • Edelstein A, Amodaj N, Hoover K et al (2010) Computer control of microscopes using µManager. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1420s92  

  • Eichhorn SJ, Sirichaisit J, Young RJ (2001) Deformation mechanisms in cellulose fibres, paper and wood. J Mater Sci 6:3129–3135

    Article  Google Scholar 

  • Enomae T, Isogai A, Naito M et al (2011) Optimum optical conditions for fluorescence imaging using a confocal laser scanning microscope to determine three-dimensional shape of ink jet dots on paper. J Imaging Sci Technol 55:020201. doi:10.2352/J.ImagingSci.Technol.55.2.020201

    Article  Google Scholar 

  • Fischer WJ, Zankel A, Ganser C et al (2013) Imaging of the formerly bonded area of individual fibre to fibre joints with SEM and AFM. Cellulose 21:251–260. doi:10.1007/s10570-013-0107-0

    Article  Google Scholar 

  • Freudiger CW, Yang W, Holtom GR et al (2014) Stimulated Raman scattering microscopy with a robust fibre laser source. Nat Photonics 8:153–159. doi:10.1038/nphoton.2013.360

    Article  CAS  Google Scholar 

  • Geissler A, Chen L, Zhang K et al (2013) Superhydrophobic surfaces fabricated from nano- and microstructured cellulose stearoyl esters. Chem Commun (Camb) 49:4962–4964. doi:10.1039/c3cc41568f

    Article  CAS  Google Scholar 

  • Gibson SF, Lanni F (1992) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A 9:154–166

  • Haggarty SJ, Perlis RH (2014) Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 75:952–960. doi:10.1016/j.biopsych.2013.05.028

    Article  CAS  Google Scholar 

  • Han R, Li Z, Fan Y, Jiang Y (2013) Recent advances in super-resolution fluorescence imaging and its applications in biology. J Genet Genomics 40:583–595. doi:10.1016/j.jgg.2013.11.003

    Article  CAS  Google Scholar 

  • Ideguchi T, Holzner S, Bernhardt B et al (2013) Coherent Raman spectro-imaging with laser frequency combs. Nature 502:355–358. doi:10.1038/nature12607

    Article  CAS  Google Scholar 

  • Jang H, Robertson A, Seth R (1992) Transverse dimensions of wood pulp fibres by confocal laser scanning microscopy and image analysis. J Mater Sci 27:6391–6400

    Article  CAS  Google Scholar 

  • Jorand R, Le Corre G, Andilla J et al (2012) Deep and clear optical imaging of thick inhomogeneous samples. PLoS ONE 7:e35795. doi:10.1371/journal.pone.0035795

    Article  CAS  Google Scholar 

  • Kirshner H, Sage D, Unser M (2011) 3D PSF models for fluorescence microscopy in imageJ. In: Proceedings of the twelfth international conference on methods and applications of fluorescence spectroscopy, imaging and probes, p 154

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma. Anal Chem 80:9131–9134. doi:10.1039/b811135a.10.1021/ac801729t

    Article  CAS  Google Scholar 

  • Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113. doi:10.1063/1.3687398

    Article  Google Scholar 

  • Li L, Tian J, Ballerini D et al (2013) A study of the transport and immobilisation mechanisms of human red blood cells in a paper-based blood typing device using confocal microscopy. Analyst 138:4933–4940. doi:10.1039/c3an00810j

    Article  CAS  Google Scholar 

  • Lindström T, Wågberg L, Larsson T (2005) On the nature of joint strength in paper: a review of dry and wet strength resins used in paper manufacturing on the nature of joint strength in paper—a review of dry and wet strength resins used in paper. 13th Fundam Res Symp

  • Lorbach C, Hirn U, Kritzinger J, Bauer W (2012) Automated 3D measurement of fiber cross section morphology in handsheets. Nord Pulp Pap Res J 27:264–269

    Article  CAS  Google Scholar 

  • Lutz B, Liang T, Fu E et al (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13:2840–2847. doi:10.1039/c3lc50178g

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320. doi:10.1002/anie.200603817

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi:10.1021/ac9013989

    Article  CAS  Google Scholar 

  • Marulier C, Dumont PJJ, Orgéas L et al (2012) Towards 3D analysis of pulp fibre networks at the fibre and bond levels. Nord Pulp Pap Res J 27:245–255

    Article  CAS  Google Scholar 

  • McNally JG, Karpova T, Cooper J, Conchello JA (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19:373–385. doi:10.1006/meth.1999.0873

    Article  CAS  Google Scholar 

  • Moss P, Retulainen E, Paulapuro H, Aaltonen P (1993) Taking a new look at pulp and paper—application of confocal laser scanning microscopy (CLSM) to pulp and paper research. Pap JA PUU-PAPER TIMBER 75:74–79

    CAS  Google Scholar 

  • Ozaki Y, Bousfield DW, Shaler SM (2006) Three-dimensional observation of coated paper by confocal laser scanning microscope. Tappi J 5:3–8

    CAS  Google Scholar 

  • Ozeki Y, Umemura W, Otsuka Y et al (2012) High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat Photonics 6:845–851. doi:10.1038/NPHOTON.2012.263

    Article  CAS  Google Scholar 

  • Persson BNJ, Ganser C, Schmied F et al (2013) Adhesion of cellulose fibers in paper. J Phys: Condens Matter 25:045002. doi:10.1088/0953-8984/25/4/045002

    Google Scholar 

  • Pigorsch E, Finger M, Thiele S, Al E (2013) Analysis of starch distribution in the paper cross-section by Raman microscopy. Appl Spectrosc 67:59–65

    Article  CAS  Google Scholar 

  • Renz M (2013) Fluorescence microscopy-a historical and technical perspective. Cytom A 83:767–779. doi:10.1002/cyto.a.22295

    Article  Google Scholar 

  • Ridler TW, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 630–632

  • Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23:778–787. doi:10.1016/j.sbi.2013.07.010

    Article  CAS  Google Scholar 

  • Samuelsen EJ, Houen P, Gregersen ØW, Helle T (2001) Three-dimensional imaging of paper by use of synchrotron X-ray microtomography. J Pulp Pap Sci 27:50–53

    CAS  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–82. doi:10.1038/nmeth.2019

  • Schmied FJ, Teichert C, Kappel L et al (2012) Joint strength measurements of individual fiber-fiber bonds: an atomic force microscopy based method. Rev Sci Instrum 83:073902. doi:10.1063/1.4731010

    Article  Google Scholar 

  • Shiraishi Y, Miyamoto R, Zhang X, Hirai T (2007) Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range. 3032–3033

  • Singh S, Carpenter AE, Genovesio A (2014) Increasing the content of high-content screening: an overview. J Biomol Screen 19:640–650. doi:10.1177/1087057114528537

    Article  Google Scholar 

  • Slepkov AD, Ridsdale A, Pegoraro AF et al (2010) Multimodal CARS microscopy of structured carbohydrate biopolymers. Biomed Opt Express 1:1347–1357. doi:10.1364/BOE.1.001347

    Article  CAS  Google Scholar 

  • Svensson S, Aronsson M (2003) Using distance transform based algorithms for extracting measures of the fiber network in volume images of paper. IEEE Trans Syst Man Cybern Part B-Cybern 33:562–571

    Article  CAS  Google Scholar 

  • Swedlow JR (2012) Innovation in biological microscopy: current status and future directions. BioEssays 34:333–340. doi:10.1002/bies.201100168

    Article  Google Scholar 

  • Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23:1935–1961. doi:10.1002/adma.201004692

    Article  Google Scholar 

  • Verveer PJ, Swoger J, Pampaloni F et al (2007) High-resolution threedimensional imaging of large specimens with light sheet-based microscopy. Nat Methods 4:311–313. doi:10.1038/NMETH1017

    CAS  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

  • Wiltsche M, Donoser M, Bauer W (2006) A novel destructive approach for 3D paper structure analysis. Lenzinger Berichte 86:90–95

    Google Scholar 

  • Wiltsche M, Donoser M, Kritzinger J, Bauer W (2011) Automated serial sectioning applied to 3D paper structure analysis. J Microsc 242:197–205. doi:10.1111/j.1365-2818.2010.03459.x

    Article  CAS  Google Scholar 

  • WITec (2000) Confocal Raman & AFM imaging of paper. Appl Note 49:1–9

    Google Scholar 

  • Xu L, Parker I, Filonenko Y (1997) Technique for determining the fibre distribution in the z-direction using confocal microscopy and image analysis. Appita J 50:325–328

    Google Scholar 

  • Zheng G, Cui Y, Karabulut E et al (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a research fellowship to S.B. of the Hessian excellence initiative LOEWE within the cluster SOFTCONTROL and a research fellowship to A.B. from the Excellency Cluster ‘‘Center of Smart Interfaces, CSI’’. Their financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Meckel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 193 kb)

Supplementary material 2 (PDF 284 kb)

Supplementary material 3 (PDF 160 kb)

Online Resource 4

Widefield video of FITC-Dextran solution transport. The transport of a FITC-Dextran solution was recorded with an image acquisition speed of 30 Hz. The video is shown in real time and 2731 frames were recorded with a 4x objective (NA 0.13). The FITC-Dextran solution filled the entire field of view after 91 s. At this point recording was terminated (MP4 24299 kb)

Online Resource 5

Confocal video of FITC-Dextran solution transport. The transport of a FITC-Dextran solution was recorded with an image acquisition speed of 1 Hz. The video plays at a frame rate of 10 Hz and 116 frames were recorded with a 20x objective (NA 0.7). The FITC-Dextran solution filled the entire field of view after 116 s. At this point recording was terminated (MP4 21417 kb)

Online Resource 6

Widefield video of fluid transport within a paper based micro-channel. The transport of a FITC-Dextran solution was recorded with an image acquisition speed of 30 Hz. The video is shown in real time and 1100 frames were recorded with a 4x objective (NA 0.13). The FITC-Dextran solution filled the visible part of the micro-channel after 33 s. At this point recording was terminated (MP4 19802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bump, S., Böhm, A., Babel, L. et al. Spatial, spectral, radiometric, and temporal analysis of polymer-modified paper substrates using fluorescence microscopy. Cellulose 22, 73–88 (2015). https://doi.org/10.1007/s10570-014-0499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0499-5

Keywords

Navigation