Advertisement

Cellulose

, Volume 22, Issue 1, pp 811–827 | Cite as

Determination of active species in the modification of hardwood samples in the flowing afterglow of N2 dielectric barrier discharges open to ambient air

  • J. Prégent
  • L. Vandsburger
  • V. Blanchard
  • P. Blanchet
  • B. Riedl
  • A. Sarkissian
  • L. StaffordEmail author
Original Paper

Abstract

Sugar maple (Acer saccharum, Mill.) wood samples were exposed to the flowing afterglow of a N2 dielectric barrier discharge (DBD) open to ambient air. Freshly-sanded wood surfaces were hydrophilized by the treatment. The dynamic behaviour of water droplets on hardwood samples further reveals a volumetric effect of treatment as well as a modification of the topmost surface. Analysis of the discharge properties by optical emission spectroscopy (OES) indicates that the neutral gas temperature (determined from the rovibrational spectrum of N2) was close to room temperature, thus ruling out wood modification due to heat transfer. OES spectra combined with a collisional-radiative model also reveals significant concentration of metastable N2(A) states and UV photons (in particular those from the NOγ system in the 200–300 nm range) in the discharge. To better examine the role of UV irradiation, wood samples were exposed to the late afterglow of a low-pressure N2/O2 plasma optimized for UV emission from the NO systems. Wood hydrophilization was observed only for samples directly exposed to the late afterglow and not for those contained in a UV-transparent enclosure. Wood hydrophilization in the DBD is thus not directly related to UV irradiation; these energetic photons rather participate [along with N2(A) metastables] in the formation of other active species, in particular atomic oxygen and ozone due to the open-air configuration. The role of ozone was confirmed by treatments in an ozone generator, showing dynamic wettability comparable to the ones achieved after treatment in the flowing afterglows of the atmospheric-pressure N2 DBD and low-pressure N2–O2 plasma. FTIR spectra of wood samples treated in the three systems (DBD, N2–O2 plasma, and ozone generator) indicate an increased lignin content due to the possible development of lignin precipitates, corroborating the effect of atomic oxygen and ozone.

Keywords

Wood Wettability Plasma processing Lignin precipitation 

Notes

Acknowledgments

This work was supported by the National Science and Engineering Research Council (NSERC) of Canada through the strategic Project Grant and the discovery Grant Programs. The authors would also like to acknowledge Prof. Joëlle Margot for providing the collisional-radiative model for N2 plasmas at atmospheric pressure that was used in this work, Dr. Fabienne Poncin-Épaillard for the first set of FTIR measurements of plasma-treated wood samples, and Dr. Frédéric Busnel for experimental groundwork and preliminary measurements on wettability.

References

  1. Acda MN, Devera EE, Cabangon RJ, Ramos HJ (2011) Effects of plasma modification on adhesion properties of wood. Int J Adhes Adhes 32(2012):70–75Google Scholar
  2. Akishev Y, Grushin M, Dyatko N, Kochetov I, Napartovich A, Trushkin N, Minh Duc T, Descours S (2008) Studies on cold plasma–polymer surface interaction by example of PP- and PET-films. J Phys D Appl Phys 41(23):235203CrossRefGoogle Scholar
  3. Al-Abadleh HA, Grassian VH (2003) FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 19:341–347CrossRefGoogle Scholar
  4. Asandulesa M, Topala I, Dumitrascu N (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64(2):223–227Google Scholar
  5. Avramidis G, Hauswald E, Lyapin A, Militz H, Viöl W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mat Sci Eng 4(1–2):52–60CrossRefGoogle Scholar
  6. Aydin İ (2004) Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels. Appl Surf Sci 233(1–4):268–274CrossRefGoogle Scholar
  7. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546CrossRefGoogle Scholar
  8. Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 20:205–218CrossRefGoogle Scholar
  9. Boudam MK, Saoudi B, Moisan M, Ricard A (2007a) Characterization of the flowing afterglows of an N2–O2 reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NOβ UV intensity variation with the N and O atom densities. J Phys D Appl Phys 40(6):1694–1711CrossRefGoogle Scholar
  10. Boudam M, Saoudi B, Moisan M, Ricard A (2007b) Characterization of the flowing afterglows of an N2–O2 reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NOβ UV intensity variation with the N and O atom densities. J Phys D Appl Phys 40(6):1694CrossRefGoogle Scholar
  11. Busnel F, Blanchard V, Prégent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24(8–10):1401–1413CrossRefGoogle Scholar
  12. Carlsson CMG, Ström G (1991) Reduction and oxidation of cellulose surfaces by means of cold plasma. Langmuir 7:2492–2497CrossRefGoogle Scholar
  13. Cotrim AR, Ferraz A, Gonçalves AR, Silva FT, Bruns RE (1999) Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and -SIMCA. Bioresour Technol 68:29–34CrossRefGoogle Scholar
  14. Custódio J, Broughton J, Cruz H, Winfield P (2009) Activation of timber surfaces by flame and corona treatments to improve adhesion. Int J Adhes Adhes 29(2):167–172CrossRefGoogle Scholar
  15. Denes AR, Mandla A, Tshabalala RR, Denes F, Young RA (1999) Hexamethyldisiloxane-plasma coating of wood surfaces for creating water repellent characteristics. Holzforschung 53:318–326Google Scholar
  16. Donnelly VM, Malyshev MV (2000) Diagnostics of inductively coupled chlorine plasmas: measurements of the neutral gas temperature. Appl Phys Lett 77(16):2467CrossRefGoogle Scholar
  17. Egitto FD, Matienzo LJ (1994) Plasma modification of polymer surfaces for adhesion improvement. IBM J Res Dev 38(4):423–439CrossRefGoogle Scholar
  18. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung: Int J Biol Chem Phys Technol Wood 45:21–28CrossRefGoogle Scholar
  19. Ferreira JA, Stafford L, Leonelli R, Ricard A (2014) Electrical characterization of the flowing afterglow of N2 and N2/O2 microwave plasmas at reduced pressure. J Appl Phys 115(16):163303CrossRefGoogle Scholar
  20. Foster M, Furse M, Passno D (2002) An FTIR study of water thin films on magnesium oxide. Surf Sci 502–503:102–108CrossRefGoogle Scholar
  21. Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Transition from glow silent discharge to micro-discharges in nitrogen gases. Plasma Sour Sci Technol 9:340–346CrossRefGoogle Scholar
  22. Gilli E, Schmied F, Diebald S, Horvath AT, Teichert C, Schennach R (2011) Analysis of lignin precipitates on ozone treated kraft pulp by FTIR and AFM. Cellulose 19:249–256CrossRefGoogle Scholar
  23. Gray D (1978) The surface analysis of paper and wood fibres by ESCA (I). Application to cellulose and lignin. Cell Chem Technol 12:9–23Google Scholar
  24. Haensel T, Comouth A, Lorenz P, Ahmed SI-U, Krischok S, Zydziak N, Kauffmann A, Schaefer JA (2009) Pyrolysis of cellulose and lignin. Appl Surf Sci 255:8183–8189CrossRefGoogle Scholar
  25. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res Sect B 208:281–286CrossRefGoogle Scholar
  26. Jamali A, Evans PD (2010) Etching of wood surfaces by glow discharge plasma. Wood Sci Technol 45(1):169–182CrossRefGoogle Scholar
  27. Klarhöfer L, Viöl W, Maus-Friedrichs W (2010) Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64(3):331–336Google Scholar
  28. Koljonen K, Österberg M, Kleen M, Fuhrmann A, Stenius P (2004) Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry, surface morphology and paper strength. Cellulose 11:209–224CrossRefGoogle Scholar
  29. Kossyi I, Kostinsky AY, Matveyev A, Silakov V (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures. Plasma Sour Sci Technol 1(3):207CrossRefGoogle Scholar
  30. Kutasi K, Saoudi B, Pintassilgo CD, Loureiro J, Moisan M (2008) Modelling the low-pressure N2–O2 plasma afterglow to determine the kinetic mechanisms controlling the UV emission intensity and its spatial distribution for achieving an efficient sterilization process. Plasma Process Polym 5(9):840–852CrossRefGoogle Scholar
  31. Levasseur O, Stafford L, Gherardi N, Naudé N, Blanchard V, Blanchet P, Riedl B, Sarkissian A (2012) Deposition of hydrophobic functional groups on wood surfaces using atmospheric-pressure dielectric barrier discharge in helium-hexamethyldisiloxane gas mixtures. Plasma Process Polym 9(11–12):1168–1175CrossRefGoogle Scholar
  32. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrol 82:170–177CrossRefGoogle Scholar
  33. López GP, Castner DG, Ratner BD (1991) XPS O 1 s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf Interface Anal 17:267–272CrossRefGoogle Scholar
  34. Mahlberg R, Niemi HE-M, Denes F, Rowell RM (1998) Effect of oxygen and hexamethyldisiloxane plasma on morphology, wettability and adhesion properties of polypropylene and lignocellulosics. Int J Adhes Adhes 18:283–297CrossRefGoogle Scholar
  35. Mamleeva NA, Kharlanov AN, Fionov AV, Lunin VV (2011) Ozonation of deciduous wood in the presence of hydrogen peroxide. Russ J Phys Chem A 85:1729–1736CrossRefGoogle Scholar
  36. Mamleeva NA, Kharlanov AN, Lunin VV (2012) Delignification of deciduous wood under the action of hydrogen peroxide and ozone. Russ J Phys Chem A 87:28–34CrossRefGoogle Scholar
  37. Mamleeva NA, Abrosimova GE, Kharlanov AN, Lunin VV (2013) Transformation of wood during ozonization in the presence of hydrogen peroxide. Russ J Phys Chem A 87:1102–1107CrossRefGoogle Scholar
  38. Maximova N, Österberg M, Laine J, Stenius P (2004) The wetting properties and morphology of lignin adsorbed on cellulose fibres and mica. Colloids Surf A 239:65–75CrossRefGoogle Scholar
  39. Naudé N, Cambronne JP, Gherardi N, Massines F (2005) Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. J Phys D Appl Phys 38(4):530–538CrossRefGoogle Scholar
  40. Opila R, Ertas G, Popescu C-M, Tibirna C-M, Vasile C (2009) XPS characterization of naturally aged wood. Appl Surf Sci 256:1355–1360CrossRefGoogle Scholar
  41. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975CrossRefGoogle Scholar
  42. Papp G, Preklet E, Košıková B, Barta E, Tolvaj L, Bohus J, Szatmári S, Berkesi O (2004) Effect of UV laser radiation with different wavelengths on the spectrum of lignin extracted from hard wood materials. J Photochem Photobiol, A 163:187–192CrossRefGoogle Scholar
  43. Papp G, Barta E, Preklet E, Tolvaj L, Berkesi O, Nagy T, Szatmári S (2005) Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy. J Photochem Photobiol A 173:137–142CrossRefGoogle Scholar
  44. Petrov GM, Matte JP, Peres I, Margot J (2000) Numerical modeling of a He–N2 capillary surface wave discharge at atmospheric pressure. Plasma Chem Plasma Process 20(2):183–208CrossRefGoogle Scholar
  45. Podgorski L, Roux M (1999) Wood modification to improve the durability of coatings. Surf Coat Int 12:590–596CrossRefGoogle Scholar
  46. Podgorski L, Chevet B, Onic L, Merlin A (2000) Modification of wood wettability by plasma and corona treatments. Int J Adhes Adhes 20:103–111CrossRefGoogle Scholar
  47. Poenariu V, Wertheimer MR, Bartnikas R (2006) Spectroscopic diagnostics of atmospheric pressure helium dielectric barrier discharges in divergent fields. Plasma Process Polym 3(1):17–29CrossRefGoogle Scholar
  48. Rehn P, Viöl W (2003) Dielectric barrier discharge treatments at atmospheric pressure for wood surface modification. Holz als Roh- und Werkstoff 61:145–150Google Scholar
  49. Rinne KT, Boettger T, Loader NJ, Robertson I, Switsur VR, Waterhouse JS (2005) On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem Geol 222:75–82CrossRefGoogle Scholar
  50. Rodrigues J, Faix O, Pereira H (1998) Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung: Int J Biol Chem Phys Technol Wood 52:46–50CrossRefGoogle Scholar
  51. Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups. J Anal Appl Pyrol 60:41–54CrossRefGoogle Scholar
  52. Schorr D, Diouf PN, Stevanovic T (2014) Evaluation of industrial lignins for biocomposites production. Ind Crops Prod 52:65–73CrossRefGoogle Scholar
  53. Sealey J, Ragauskas AJ (1998) Residual lignin studies of laccase-delignified kraft pulps. Enzyme Microbial Technol 23:422–426CrossRefGoogle Scholar
  54. Šimek M, Pekárek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32(4):743–754CrossRefGoogle Scholar
  55. Sinn G, Reiterer A, Stanzl-Tschegg SE (2001) Surface analysis of different wood species using X-ray photoelectron spectroscopy (XPS). J Mater Sci 36:4673–4680CrossRefGoogle Scholar
  56. Sun Y, Royer M, Diouf PN, Stevanovic T (2010) Chemical changes induced by high-speed rotation welding of wood—application to two Canadian hardwood species. J Adhes Sci Technol 24(8–10):1383–1400CrossRefGoogle Scholar
  57. Toriz G, Gutiérrez MG, González-Alvarez V, Wendel A, Gatenholm P, Martínez-Gómez AD (2008) J Highly hydrophobic wood surfaces prepared by treatment with atmospheric pressure dielectric barrier discharges. J Adhes Sci Technol 22(16):2059–2078CrossRefGoogle Scholar
  58. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2008) Plasma treatment of wood–plastic composites to enhance their adhesion properties. J Adhes Sci Technol 22(16):2025–2037CrossRefGoogle Scholar
  59. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29(1):18–22CrossRefGoogle Scholar
  60. Zhbankov RG, Firsov SP, Buslov DK, Nikonenko NA, Marchewka MK, Ratajczak H (2002) Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J Mol Struct 614:117–125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Prégent
    • 1
  • L. Vandsburger
    • 1
  • V. Blanchard
    • 2
  • P. Blanchet
    • 2
    • 3
  • B. Riedl
    • 3
  • A. Sarkissian
    • 4
  • L. Stafford
    • 1
    Email author
  1. 1.Département de PhysiqueUniversité de MontréalMontréalCanada
  2. 2.FPInnovationsQuébecCanada
  3. 3.Centre de Recherche sur les Matériaux RenouvelablesUniversité LavalQuébecCanada
  4. 4.PlasmioniqueVarennesCanada

Personalised recommendations