Skip to main content
Log in

Porous cellulose facilitated by ionic liquid [BMIM]Cl: fabrication, characterization, and modification

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Porous celluloses (PCs) were successfully prepared by a simple process of freezing the cellulose solution in ionic liquid, followed by solvent exchange and drying at normal temperature instead of the supercritical drying. PCs were composed of cellulose sheets of low crystallinity, as evidenced by SEM, XRD, TGA and FTIR, oriented into unidirectional structures when the cellulose concentration was low (1 %). When the cellulose concentration was high (4 %) the structure was twisted and randomly oriented. PCs had low apparent densities of 44–88 mg/cm3 and oil adsorption capacities ranging from 9.70 to 22.40 g/g (oil/PC) due to the ultralight porous structures. Oxidation of sodium periodate introduced dialdehyde groups into the porous structure. After the same reaction time, the aldehyde content of PC was much higher than the untreated cellulose counterpart. The resultant dialdehyde modified-PC had better urea adsorption than modified-viscose fiber. The high reactivity of PCs was related to the low crystallinity and porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohyd Polym 75:125–129

    Article  CAS  Google Scholar 

  • Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433

    Article  CAS  Google Scholar 

  • Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  • Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohyd Polym 79:301–305

    Article  CAS  Google Scholar 

  • Chen M, Chen C, Liu C, Sun R (2013) Homogeneous modification of sugarcane bagasse with maleic anhydride in 1-butyl-3-methylimidazolium chloride without any catalysts. Ind Crop Prod 46:380–385

    Article  CAS  Google Scholar 

  • Cong H, Ren X, Wang P, Yu S (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703

    Article  CAS  Google Scholar 

  • Duchemin B, Staiger MP (2009) Treatment of Harakeke fiber for biocomposites. J Appl Polym Sci 112:2710–2715

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohyd Polym 94:773–781

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  • Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D (2011) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agr Food Chem 59:5376–5381

    Article  CAS  Google Scholar 

  • Mahmoudian S, Wahit MU, Ismail AF, Yussuf AA (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohyd Polym 88:1251–1257

    Article  CAS  Google Scholar 

  • Rao AV, Hegde ND, Hirashima H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interf Sci 305:124–132

    Article  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohyd Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Veelaert S, de Wit D, Gotlieb KF, Verhé R (1997) Chemical and physical transitions of periodate oxidized potato starch in water. Carbohyd Polym 33:153–162

    Article  CAS  Google Scholar 

  • Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  • Wen J, Sun Y, Meng L, Yuan TQ, Xu F, Sun RC (2011) Homogeneous lauroylation of ball-milled bamboo in ionic liquid for bio-based composites production Part I: modification and characterization. Ind Crop Prod 34:1491–1501

    Article  CAS  Google Scholar 

  • Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresourc Technol 100:2832–2841

    Article  CAS  Google Scholar 

  • Yu G, Chang P, Ma X (2010) The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch. Carbohyd Polym 79:296–300

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhang N, Qiu H, Si Y, Wang W, Gao J (2011) Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 49:827–837

    Article  CAS  Google Scholar 

  • Zhang QL, Shi F, Wang P, Lin DQ, Yao SJ (2014) Preparation of cellulose adsorbents with ionic liquid and pore expansion for chromatographic applications. J Appl Polym Sci. doi:10.1002/APP.40060

    Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  CAS  Google Scholar 

  • Zheng P, Chang PR, Ma X (2013) Preparation and characterization of rectorite gels. Ind Eng Chem Res 52:5066–5071

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science and Technology Project of Jiangxi Provincial Office of Education (KJLD12082 and Innovation Platform “project 311″) and Nature Science Foundation of Jiangxi Province (20132BAB 206006) and the National Nature Science Foundation of China (51162011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chang, P.R., Zheng, P. et al. Porous cellulose facilitated by ionic liquid [BMIM]Cl: fabrication, characterization, and modification. Cellulose 22, 709–715 (2015). https://doi.org/10.1007/s10570-014-0467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0467-0

Keywords

Navigation