, Volume 21, Issue 6, pp 4349–4358 | Cite as

Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose

  • Núria Butchosa
  • Qi ZhouEmail author
Original Paper


Cellulose nanofibrils (CNFs) are difficult to redisperse in water after they have been completely dried due to the irreversible agglomeration of cellulose during drying. Here, we have developed a simple process to prepare water-redispersible dried CNFs by the adsorption of small amounts of carboxymethyl cellulose (CMC) and oven drying. The adsorption of CMC onto CNFs in water suspensions at 22 and 121 °C was studied, and the adsorbed amount of CMC was measured via conductimetric titration. The water-redispersibility of dried CNFs adsorbed with different amounts of CMC was characterized by sedimentation test. Above a critical threshold of CMC adsorption, i.e. 2.3 wt%, the oven dried CNF–CMC sample was fully redispersible in water. The morphology, rheological, and mechanical properties of water-redispersed CNF–CMC samples were investigated by field emission scanning electron microscopy, viscosity measurement, and tensile test, respectively. The water-redispersed CNFs preserved the original properties of never dried CNFs. This new method will facilitate the production, transportation and storage, and large-scale industrial applications of CNFs.


Cellulose nanofibrils Carboxymethyl cellulose Adsorption Redispersion 



The authors thank the Swedish Research Council Formas (CarboMat, 2009-1687) and the Wallenberg Wood Science Center for supporting this work.


  1. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82. doi: 10.1016/S0927-7757(98)00404-X CrossRefGoogle Scholar
  2. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. doi: 10.1021/La001070m CrossRefGoogle Scholar
  3. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494. doi: 10.1021/Bm300191k CrossRefGoogle Scholar
  4. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023 CrossRefGoogle Scholar
  5. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. doi: 10.1021/ja01864a025 CrossRefGoogle Scholar
  6. Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409. doi: 10.1021/La960724h CrossRefGoogle Scholar
  7. Duker E, Brannvall E, Lindström T (2007) The effects of CMC attachment onto industrial and laboratory-cooked pulps. Nord Pulp Pap Res J 22:356–363. doi: 10.3183/NPPRJ-2007-22-03-p356-363 CrossRefGoogle Scholar
  8. Duker E, Ankerfors M, Lindström T, Nordmark GG (2008) The use of CMC as a dry strength agent—the interplay between CMC attachment and drying. Nord Pulp Pap Res J 23:65–71. doi: 10.3183/NPPRJ-2008-23-01-p065-071 CrossRefGoogle Scholar
  9. Ebadi A, Mohammadzadeh JSS, Khudiev A (2009) What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 15:65–73. doi: 10.1007/s10450-009-9151-3 CrossRefGoogle Scholar
  10. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. doi: 10.1007/S10570-009-9372-3 CrossRefGoogle Scholar
  11. Fang ZQ et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773. doi: 10.1021/Nl404101p CrossRefGoogle Scholar
  12. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13:736–742. doi: 10.1021/Bm201661k CrossRefGoogle Scholar
  13. Fras-Zemljic L, Stenius P, Laine J, Stana-Kleinschek K (2006) The effect of adsorbed carboxymethyl cellulose on the cotton fibre adsorption capacity for surfactant. Cellulose 13:655–663. doi: 10.1007/S10570-006-9071-2 CrossRefGoogle Scholar
  14. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by tempo-mediated oxidation. Biomacromolecules 10:162–165. doi: 10.1021/Bm801065u CrossRefGoogle Scholar
  15. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  16. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi: 10.1021/Bm800038n CrossRefGoogle Scholar
  17. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956. doi: 10.1016/j.eurpolymj.2012.10.016 CrossRefGoogle Scholar
  18. Hu LB, Wu H, La Mantia F, Yang YA, Cui Y (2010) Thin, flexible secondary li-ion paper batteries. ACS Nano 4:5843–5848. doi: 10.1021/Nn1018158 CrossRefGoogle Scholar
  19. Ishimaru Y, Lindström T (1984) Adsorption of water-soluble, nonionic polymers onto cellulosic fibers. J Appl Polym Sci 29:1675–1691. doi: 10.1002/app.1984.070290521 CrossRefGoogle Scholar
  20. Jin H et al (2011) Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27:1930–1934. doi: 10.1021/La103877r CrossRefGoogle Scholar
  21. Laine J, Lindström T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibres Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibres. Nord Pulp Pap Res J 15:520–526. doi: 10.3183/NPPRJ-2000-15-05-p520-526 CrossRefGoogle Scholar
  22. Liu ZL, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27:8718–8728. doi: 10.1021/La200628a CrossRefGoogle Scholar
  23. Lowys MP, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32. doi: 10.1016/S0268-005x(00)00046-1 CrossRefGoogle Scholar
  24. Missoum K, Bras J, Belgacem MN (2012) Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13:4118–4125. doi: 10.1021/Bm301378n Google Scholar
  25. Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi: 10.1023/B:Cell.0000014768.28924.0c CrossRefGoogle Scholar
  26. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852. doi: 10.1002/Adma.200702559 CrossRefGoogle Scholar
  27. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast all-polymer paper-based batteries. Nano Lett 9:3635–3639. doi: 10.1021/Nl901852h CrossRefGoogle Scholar
  28. Olsson RT et al (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588. doi: 10.1038/Nnano.2010.155 CrossRefGoogle Scholar
  29. Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941. doi: 10.1021/Bm061215p CrossRefGoogle Scholar
  30. Pääkkö M et al (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499. doi: 10.1039/B810371b CrossRefGoogle Scholar
  31. Pahimanolis N et al (2013) Nanofibrillated cellulose/carboxymethyl cellulose composite with improved wet strength. Cellulose 20:1459–1468. doi: 10.1007/S10570-013-9923-5 CrossRefGoogle Scholar
  32. Pei AH, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055. doi: 10.1039/C2sm27344f CrossRefGoogle Scholar
  33. Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425. doi: 10.1021/Bm034144s CrossRefGoogle Scholar
  34. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691. doi: 10.1021/Bm060154s CrossRefGoogle Scholar
  35. Sehaqui H, Liu AD, Zhou Q, Berglund LA (2010a) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198. doi: 10.1021/Bm100490s CrossRefGoogle Scholar
  36. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010b) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832. doi: 10.1039/B927505c CrossRefGoogle Scholar
  37. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599. doi: 10.1016/J.Compscitech.07.003 CrossRefGoogle Scholar
  38. Sehaqui H, Mushi NE, Morimune S, Salajkova M, Nishino T, Berglund LA (2012) Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl Mater Interfaces 4:1043–1049. doi: 10.1021/Am2016766 CrossRefGoogle Scholar
  39. Zemljic LF, Stenius P, Laine J, Stana-Kleinschek K (2008) Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose 15:315–321. doi: 10.1007/S10570-007-9175-3 CrossRefGoogle Scholar
  40. Zhu HL et al (2013) Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett 13:3093–3100. doi: 10.1021/Nl400998t CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
  2. 2.Wallenberg Wood Science CenterRoyal Institute of TechnologyStockholmSweden
  3. 3.School of Biotechnology, AlbaNova University CentreRoyal Institute of TechnologyStockholmSweden

Personalised recommendations