Skip to main content

Superior antioxidant polymer films created through the incorporation of grape tannins in ethyl cellulose

Abstract

Agro-wastes represent an abundant and economical source of antioxidant compounds. Extraction and incorporation of antioxidants from these compounds into ethyl cellulose films provides the basis for an active packaging material. Grape tannin extract (GT) incorporation into ethyl cellulose results in hydrogen bonding between polyphenols and ethyl cellulose strands, which allows for the polyphenols to remain active and to be securely incorporated. Incorporation of 0.5 % GT in ethyl cellulose produced a significant increase (p < 0.01) in antioxidant activity while not altering physical or mechanical properties. A higher loading of GT at 3.0 % into ethyl cellulose resulted in further improvement in antioxidant activity (12-fold), while a slight decrease in the tensile properties was noted due to the plasticizing effect of GT as a consequence of disruption of the intermolecular hydrogen bonding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aliakbarian B, Fathi A, Perego P, Dehghani F (2012) Extraction of antioxidants from winery wastes using subcritical water. J Supercrit Fluids 65:18–24. doi:10.1016/j.supflu.2012.02.022

    CAS  Article  Google Scholar 

  2. Ambrogi V, Cerruti P, Carfagna C, Malinconico M, Marturano V, Perrotti M, Persico P (2011) Natural antioxidants for polypropylene stabilization. Polym Degrad Stab 96:2152–2158. doi:10.1016/j.polymdegradstab.2011.09.015

    CAS  Article  Google Scholar 

  3. Arrua D, Strumia MC, Nazareno MA (2010) Immobilization of caffeic acid on a polypropylene film: synthesis and antioxidant properties. J Agric Food Chem 58:9228–9234. doi:10.1021/jf101651y

    CAS  Article  Google Scholar 

  4. Arrua RD, Basbus JF, Strumia MC, Alvarez Igarzabal CI, Nazareno MA (2012) Synthesis of macroporous polymers with radical scavenging properties by immobilization of polyphenolic compounds. React Funct Polym 72:807–813. doi:10.1016/j.reactfunctpolym.2012.07.017

    CAS  Article  Google Scholar 

  5. Arvanitoyannis IS, Ladas D, Mavromatis A (2006) Potential uses and applications of treated wine waste: a review. Int J Food Sci Technol 41:475–487. doi:10.1111/j.1365-2621.2005.01111.x

    CAS  Article  Google Scholar 

  6. American Society for Testing Mateials (2000) ASTM standards [electronic resource] ASTM International, West Conshohocken, PA

  7. Blanco-Pascual N, Montero MP, Gómez-Guillén MC (2014) Antioxidant film development from unrefined extracts of brown seaweeds Laminaria digitata and Ascophyllum nodosum. Food Hydrocoll 37:100–110. doi:10.1016/j.foodhyd.2013.10.021

  8. Bourtoom T, Chinnan MS, Jantawat P, Sanguandeekul R (2006) Effect of plasticizer type and concentration on the properties of edible film from water-soluble fish proteins in surimi wash-water. Food Sci Technol Int 12:119–126. doi:10.1177/1082013206063980

    CAS  Article  Google Scholar 

  9. Bradley DG, Min DB (1992) Singlet oxygen oxidation of foods. Crit Rev Food Sci Nutr 31:211–236

    CAS  Article  Google Scholar 

  10. Cerruti P, Malinconico M, Rychly J, Matisova-Rychla L, Carfagna C (2009) Effect of natural antioxidants on the stability of polypropylene films. Polym Degrad Stab 94:2095–2100. doi:10.1016/j.polymdegradstab.2009.07.023

    CAS  Article  Google Scholar 

  11. Cerruti P, Santagata G, Gomez d’Ayala G, Ambrogi V, Carfagna C, Malinconico M, Persico P (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad and Stab 96:839–846. doi:10.1016/j.polymdegradstab.2011.02.003

    CAS  Article  Google Scholar 

  12. Colon M, Nerin C (2012) Role of catechins in the antioxidant capacity of an active film containing green tea, green coffee, and grapefruit extracts. J Agric Food Chem 60:9842–9849. doi:10.1021/jf302477y

    CAS  Article  Google Scholar 

  13. de Campos LMAS, Leimann FV, Pedrosa RC, Ferreira SRS (2008) Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour Technol 99:8413–8420. doi:10.1016/j.biortech.2008.02.058

    Article  Google Scholar 

  14. Fontana AR, Antoniolli A, Bottini R (2013) Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J Agric Food Chem 61:8987–9003. doi:10.1021/jf402586f

    CAS  Article  Google Scholar 

  15. Foo LY (1981) Proanthocyanidins: gross chemical structures by infrared spectra. Phytochemistry 20:1397–1402. doi:10.1016/0031-9422(81)80047-7

    CAS  Article  Google Scholar 

  16. Helal A, Tagliazucchi D, Conte A, Desobry S (2012) Antioxidant properties of polyphenols incorporated in casein/sodium caseinate films. Int Dairy J 25:10–15. doi:10.1016/j.idairyj.2011.12.002

    CAS  Article  Google Scholar 

  17. Hsu CF, Kilmartin PA (2012) Antioxidant capacity of robust polyaniline–ethyl cellulose films. React Funct Polym 72:814–822. doi:10.1016/j.reactfunctpolym.2012.07.015

    CAS  Article  Google Scholar 

  18. Iñiguez-Franco F, Soto-Valdez H, Peralta E, Ayala-Zavala JF, Auras R, Gámez-Meza N (2012) Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of poly(l-lactic acid). J Agric Food Chem 60:6515–6523. doi:10.1021/jf300668u

    Article  Google Scholar 

  19. Krizova H, Wiener J (2013) Development of carboxymethyl cellulose/polyphenols gels for textile applications. Autex Res J 13:33–36. doi:10.2478/v10304-012-0021-9

  20. Kunte LA, Gennadios A, Cuppett SL, Hanna MA, Weller CL (1997) Cast films from soy protein isolates and fractions 1. Cereal Chem J 74:115–118. doi:10.1094/CCHEM.1997.74.2.115

    CAS  Article  Google Scholar 

  21. Lafka T-I, Sinanoglou V, Lazos ES (2007) On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem 104:1206–1214. doi:10.1016/j.foodchem.2007.01.068

    CAS  Article  Google Scholar 

  22. Laghi L, Parpinello GP, Rio DD, Calani L, Mattioli AU, Versari A (2010) Fingerprint of enological tannins by multiple techniques approach. Food Chem 121:783–788. doi:10.1016/j.foodchem.2010.01.002

    CAS  Article  Google Scholar 

  23. Li J-H, Miao J, Wu J-L, Chen S-F, Zhang Q-Q (2014) Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll 37:166–173. doi:10.1016/j.foodhyd.2013.10.015

    CAS  Article  Google Scholar 

  24. López de Dicastillo C, MDM Castro-López, López-Vilariño JM, González-Rodríguez MV (2013) Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Res Int 53:522–528. doi:10.1016/j.foodres.2013.05.022

    Article  Google Scholar 

  25. Moradi M, Tajik H, Razavi Rohani SM, Oromiehie AR, Malekinejad H, Aliakbarlu J, Hadian M (2012) Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT Food Sci Technol 46:477–484. doi:10.1016/j.lwt.2011.11.020

    CAS  Article  Google Scholar 

  26. Nerín C, Tovar L, Djenane D, Camo J, Salafranca J, Beltrán JA, Roncalés P (2006) Stabilization of beef meat by a new active packaging containing natural antioxidants. J Agric Food Chem 54:7840–7846. doi:10.1021/jf060775c

    Article  Google Scholar 

  27. Nuopponen MH, Wikberg HI, Birch GM, Jääskeläinen A-S, Maunu SL, Vuorinen T, Stewart D (2006) Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polym Sci 102:810–819. doi:10.1002/app.24143

    CAS  Article  Google Scholar 

  28. Pantoja-Castro MA, Gonzalez-Rodriguez H (2011) Study by infrared spectroscopy and thermogravimetric analysis of Tannins and Tannic acid. Rev Latinoam Quim 39:107–112

    CAS  Google Scholar 

  29. Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol Food Hydrocolloids 30:272–280 doi:10.1016/j.foodhyd.2012.05.026

  30. Peltzer M, Wagner JR, Jiménez A (2007) Thermal characterization of UHMWPE stabilized with natural antioxidants. J Therm Anal Calorim 87:493–497. doi:10.1007/s10973-006-7453-1

    CAS  Article  Google Scholar 

  31. Ping L, Pizzi A, Guo ZD, Brosse N (2012) Condensed tannins from grape pomace: characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Ind Crops Prod 40:13–20. doi:10.1016/j.indcrop.2012.02.039

    CAS  Article  Google Scholar 

  32. PlasticsEurope (2013) Plastics—the facts 2013: an analysis of European latest plastics production, demand and waste data. http://www.plasticseurope.org/Document/plastics-the-facts-2013.aspx?Page=DOCUMENT&FolID=2. Accessed 12 Dec 2013

  33. Quilaqueo Gutiérrez M, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydr Polym 87:1495–1502. doi:10.1016/j.carbpol.2011.09.040

    Article  Google Scholar 

  34. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    CAS  Article  Google Scholar 

  35. Rubilar JF, Cruz RMS, Khmelinskii I, Vieira MC (2013) Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices. Int J Food Stud 2:22–38

    Article  Google Scholar 

  36. Silva-Weiss A, Ihl M, Sobral PJA, Gómez-Guillén MC, Bifani V (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng Rev 5:200–216. doi:10.1007/s12393-013-9072-5

    CAS  Article  Google Scholar 

  37. Silverstein RM (2005) Infrared spectrometry. In: Silverstein RM, Webster FX, Kiemle DJ (eds) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken, NJ

  38. Siripatrawan U, Noipha S (2012) Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocoll 27:102–108. doi:10.1016/j.foodhyd.2011.08.011

    CAS  Article  Google Scholar 

  39. Sivarooban T, Hettiarachchy NS, Johnson MG (2008) Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res Int 41:781–785. doi:10.1016/j.foodres.2008.04.007

    CAS  Article  Google Scholar 

  40. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester, NY

  41. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, Picci N (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10:1923–1930. doi:10.1021/bm900325t

    CAS  Article  Google Scholar 

  42. The United States Pharmacopeial Convention, Committee of Revision (2011) The United States Pharmacopeia 34, The United States Pharmacopeial Convention, Inc., Rockville, MD

  43. Wang S, Marcone MF, Barbut S, Lim L-T (2012) Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Res Int 49:80–91. doi:10.1016/j.foodres.2012.07.023

    CAS  Article  Google Scholar 

  44. Wu R-L, Wang X-L, Li F, Li H-Z, Wang Y-Z (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574. doi:10.1016/j.biortech.2008.11.044

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was funded in part by a University of Auckland Postgraduate Research Student Support account and an Education New Zealand International Doctoral Research Scholarship. This work was financially supported by the New Zealand Ministry of Business, Innovation and Employment (MBIE) through the Hybrid Polymers programme (UOAX812). Author AR, visiting scientist at University of Auckland, aknowledge the support of a PhD fellowship from the University of Bologna (Italy).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Olejar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Olejar, K.J., Ray, S., Ricci, A. et al. Superior antioxidant polymer films created through the incorporation of grape tannins in ethyl cellulose. Cellulose 21, 4545–4556 (2014). https://doi.org/10.1007/s10570-014-0447-4

Download citation

Keywords

  • Antioxidant
  • Grape tannin
  • Ethyl cellulose
  • Packaging
  • ABTS