Skip to main content
Log in

Merely Ag nanoparticles using different cellulose fibers as removable reductant

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Merely silver nanoparticles (AgNPs) were synthesized as a colloidal solution without containing reducing or stabilizing agents using a totally green, one-pot, quite simple method. The unique advantage of this method is the use of a removable reducing agent to produce merely AgNPs. The reducing features and insolubility property of cellulose fibers make them the preferred potential removable reducing agents. Three different cellulosic fibers with different degrees of polymerization, namely viscose, lyocell and cotton fibers, were used. The best results for preparation of AgNPs was obtained by using viscose, followed by cotton then lastly lyocell fibers. When using viscose, the highest surface plasmon resonance peak for AgNPs and small particle size (mean = 9.5 nm) were obtained after 15 min. The carboxyl content of cellulose fibers was increased after treatment with AgNO3, indicating the conversion of reducing groups of cellulose to carboxylic groups by the reduction of Ag+ to Ag0. Results showed that 30 % of AgNPs were aggregated and precipitated after storage for 2 months. The prepared AgNPs were more convenient to use in the medical and biomedical fields as the pure solution does not contain any other chemicals of reducing or stabilizing agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdel-Mohsen AM, Aly AS, Hrdina R (2012) A novel method for the preparation of silver/chitosan-O-methoxy polyethylene glycol core shell nanoparticles. J Polym Environ 20:459–468

    Article  CAS  Google Scholar 

  • Abdel-Mohsen AM, Rasha MA, Moustafa MGF, Vojtova L, Uhrova L, Hassan AF, Salem SA, El-Shamy IE, Jancar J (2014) Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr Polym 102:238–245

    Article  CAS  Google Scholar 

  • Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4(12):7007–7010

    Article  CAS  Google Scholar 

  • Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express 1(5):1019–1033

    Article  CAS  Google Scholar 

  • Big T, Mingwen Z, Xue-Liang H, Jing-Liang L, Lu S, Xun-Gai W (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51:12807–12813

    Article  Google Scholar 

  • Bin T, Jinfeng W, Shuping X, Tarannum A, Weiqing X, Lu S, Xun-Gai W (2011) Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci 356:513–518

    Article  Google Scholar 

  • Bin T, Jing-Liang L, Xue-Liang H, Tarannum A, Lu S, Xun-Gai W (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res. doi:10.1021/ie3033872

    Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10(1):87–94

    Article  Google Scholar 

  • Castonguay A, Kakkar AK (2010) Dendrimer templated construction of silver nanoparticles. Adv Colloid Interface Sci 160:76–87

    Article  CAS  Google Scholar 

  • Deivaraj TC, Lala NL, Lee JY (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289:402–409

    Article  CAS  Google Scholar 

  • El-Rafie MH, Ahmed HB, Zahran MK (2014) Characterization of nanosilver coated cotton fabrics and evaluation of its antibacterial efficacy. Carbohydr Polym 107:174–181

    Article  CAS  Google Scholar 

  • Emam HE, Manian AP, Široká B, Duelli H, Redl B, Pipal A, Bechtold T (2013) Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles e why “nano”-silver? J Clean Prod 39:17–23

    Article  CAS  Google Scholar 

  • Emam HE, Mowafi S, Mashaly HM, Rehan M (2014) Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydr Polym 110:148–155

    Article  CAS  Google Scholar 

  • Gao C, Yan D (2004) Hyper branched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  • Gopinath V, Mubarak AD, Priyadarshini S, Meera PN, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B 96:69–74

    Article  CAS  Google Scholar 

  • Harada M, Katagiri E (2010) Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis. Langmuir 26(23):17896–17905

    Article  CAS  Google Scholar 

  • Harekrishna B, Dipak K, Bhui GP, Sahoo PS, Santanu P, Ajay M (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A: Physicochem Eng Asp 348:212–216

    Article  Google Scholar 

  • Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE (2010) Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 82:933–941

    Article  CAS  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10(9):2714–2717

    Article  CAS  Google Scholar 

  • Janata E (2003) Structure of the trimer silver cluster Ag 23 . J Phys Chem B 107:7334–7336

    Article  CAS  Google Scholar 

  • Ju YK, Tallahassee FL (2010) Method for preparing an antimicrobial cotton of cellulose matrix having chemically and/or physically bonded silver and antimicrobial cotton prepared therefrom. United State Patent Application Publication, US 2010/0316693 A1

  • Khanna PK, Subbarao VS (2003) Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater Lett 57(15):2242–2245

    Article  CAS  Google Scholar 

  • Klemm B, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, 2nd edn. Wiley, Weinheim, p 236

    Book  Google Scholar 

  • Kotelnikova NE, Demidov VN, Wegener G, Windeisen E, Kotelnikov VP (2003) Silver cluster intercalation into the cellulose matrix. I: mechanisms of diffusion-reduction interaction of microcrystalline cellulose and silver ions. Cellul Chem Technol 37(3–4):225–238

    CAS  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77(3):233–257

    Article  CAS  Google Scholar 

  • Larguinho M, Baptista PV (2012) Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. J Proteomics 75:2811–2823

    Article  CAS  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  Google Scholar 

  • Pastoriza-sontos I, Liz-Marzan LM (2002) Synthesis of silver nanoprisms in DMF. Langmuir 18:2888–2894

    Article  Google Scholar 

  • Rabilloud T, Vuillard L, Gilly C, Lawrence JJ (1994) Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol (Noisyle- Grand, France) 40(1):57–75

    CAS  Google Scholar 

  • Richter TV, Schüler F, Thomann R, Mülhaupt R, Ludwigs S (2009) Nanocomposites of size-tunable ZnO-nanoparticles and amphiphilic hyper branched polymers. Macromol Rapid Commun 30:579–583

    Article  CAS  Google Scholar 

  • Sadhan S, Priyanka S, Santanu P, Gobinda PS, Ajay M (2012) Synthesis of silver nanodiscs and triangular nanoplates in PVP matrix: photophysical study and simulation of UV–Vis extinction spectra using DDA method. J Mol Liq 165:21–26

    Article  Google Scholar 

  • Sakai H, Kanada T, Shibata H, Ohkubo T, Abe M (2006) Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J Am Chem Soc 128:4944–4945

    Article  CAS  Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69(2):164–168

    Article  CAS  Google Scholar 

  • Tien H-W, Huang Y-L, Yang S-Y, Wang J-Y, Ma C-CM (2011) The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films. Carbon 49:1550–1560

    Article  CAS  Google Scholar 

  • Van Hyning D, Klemperer W, Zukoski C (2001) Silver nanoparticle formation; predictions and verification of the aggregative growth model. Langmuir 17:3128–3135

    Article  Google Scholar 

  • Watson A (2009) Gold nanoparticles: a novel dye for synthetic fabrics. Master thesis, School of Chemical and Physical Sciences, Victoria University of Wellington

  • Zahran MK, Ahmed HB, El-Rafie MH (2014a) Alginate mediate for synthesis controllable sized AgNPs. Carbohydr Polym 111:10–17

    Article  CAS  Google Scholar 

  • Zahran MK, Ahmed HB, El-Rafie MH (2014b) Facile size-regulated synthesis of silver nanoparticles using pectin. Carbohydr Polym 111:971–978

    Article  CAS  Google Scholar 

  • Zahran MK, Ahmed HB, El-Rafie MH (2014c) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite. Carbohydr Polym 108:145–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam E. Emam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emam, H.E., El-Bisi, M.K. Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose 21, 4219–4230 (2014). https://doi.org/10.1007/s10570-014-0438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0438-5

Keywords