Skip to main content
Log in

Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Glycidyl methacrylate (GMA), was grafted from cellulose by the combination of radiation-induced initiation and the reversible addition-fragmentation chain transfer (RAFT) polymerization technique, leading to epoxy functionalized surfaces that enable further modifications. Cumyl dithiobenzoate and 2-cyanoprop-2-yl dithiobenzoate were employed as the RAFT agents. The effects of absorbed dose, monomer and RAFT agent concentrations and solvent choice on grafting yield were investigated. Characterization of the synthesized copolymers by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and contact angle measurements revealed the grafting of poly(glycidyl methacrylate) (PGMA) from cellulose. Size-exclusion chromatography analysis indicated the difficulty of controlling the polymerization of GMA due to branching and/or crosslinking reactions that might occur in PGMA structure under γ-radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad S, Zulfiqar S (2002) Synthesis, characterization and thermal degradation of glycidyl methacrylate-a-methyl styrene copolymers. Polym Degrad Stab 76:173–177

    Article  CAS  Google Scholar 

  • Bannister I, Billingham NC, Armes SP, Rannard SP, Findlay P (2006) Development of branching in living radical copolymerization of vinyl and divinyl monomers. Macromolecules 39:7483–7492

    Article  CAS  Google Scholar 

  • Barner L, Zwaneveld N, Perera S, Pham Y, Davis TP (2002) Reversible addition–fragmentation chain-transfer graft polymerization of styrene: solid phases for organic and peptide synthesis. J Polym Sci A Polym Chem 40:4180–4192

    Article  CAS  Google Scholar 

  • Barner L, Quinn JF, Barner-Kowollik C, Vana P, Davis TP (2003) Reversible addition–fragmentation chain transfer polymerization initiated with γ-radiation at ambient temperature: an overview. Eur Polym J 39:449–459

    Article  CAS  Google Scholar 

  • Barner-Kowollik C, Vana P, Quinn JF, Davis TP (2002) Long-lived intermediates in reversible addition-fragmentation chain-transfer (RAFT) polymerization generated by γ-radiation. J Polym Sci A Polym Chem 40:1058–1063

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O (2009) A short review of radiation-induced raft-mediated graft copolymerization: a powerful combination for modifying the surface properties of polymers in a controlled manner. Radiat Phys Chem 78:1054–1059

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O (2013) RAFT mediated grafting of poly(acrylic acid) (PAA) from polyethylene/polypropylene (PE/PP) nonwoven fabric via preirradiation. Polymer 54:4838–4848

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O, Stenzel MH, Davis TP, Barner-Kowollik C, Barner L (2007) Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40:7140–7147

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O, Davis TP, Barner-Kowollik C, Barner L (2009) RAFT-mediated polymerization and grafting of sodium 4-styrene sulfonate from cellulose initiated via γ-radiation. Polymer 50:973–982

    Article  CAS  Google Scholar 

  • Barsbay M, Güven O, Bessbousse H, Wade TL, Beuneu F, Clochard M-C (2013) Nanopore size tuning of polymeric membranes using the raft-mediated radical polymerization. J Membr Sci 445:135–145

    Article  CAS  Google Scholar 

  • Beecher JF, Frihart CR (2005) X-ray photoelectron spectroscopy for characterization of wood surfaces in adhesion studies. In: Frihart CR (ed) Wood adhesives 2005. Forest Products Society, San Diego, ISBN: 1892529459, pp 83–89

  • Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814

    Article  CAS  Google Scholar 

  • Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York, p VII/15

  • Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214:1539–1544

    Article  CAS  Google Scholar 

  • Dilli S, Garnett JL (1967) Radiation-induced reactions with cellulose. III. Kinetics of styrene copolymerization in methanol. J Appl Polym Sci 11:859–870

    Article  CAS  Google Scholar 

  • Dureault A, Gnanou Y, Taton D, Destarac M, Leising F (2003) Reaction of cyclic tetrathiophosphates with carboxylic acids as a means to generate dithioesters and control radical polymerization by RAFT. Angew Chem Int Ed 42:2869–2872

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Pascoal NC, Gandini A, Fardim P, Holmbom B (2006) Surface characterization by XPS, contact angle measurements and ToF-SIMS of cellulose fibers partially esterified with fatty acids. J Colloid Interface Sci 301:205–209

    Article  CAS  Google Scholar 

  • Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34:317–350

    Article  CAS  Google Scholar 

  • Gao H, Min K, Matyjaszewski K (2007) Determination of gel point during atom transfer radical copolymerization with cross-linker. Macromolecules 40:7763–7770

    Article  CAS  Google Scholar 

  • Gudipati CS, Tan MBH, Hussain H, Liu Y, He C, Davis TP (2008) Synthesis of poly(glycidyl methacrylate)-block- poly(pentafluorostyrene) by RAFT: precursor to novel amphiphilic poly(glyceryl methacrylate)-block-poly(pentafluorostyrene). Macromol Rapid Commun 29:1902–1907

    Article  CAS  Google Scholar 

  • Han DH, Pan CY (2006) A novel strategy to synthesize double comb-shaped water soluble copolymer by RAFT polymerization. Macromol Chem Phys 207:836–843

    Article  CAS  Google Scholar 

  • Hua DB, Bai W, Xiao J, Bai RK, Lu W, Pan CY (2005) A strategy for synthesis of azide polymers via controlled/living free radical copolymerization of allyl azide under 60Co γ-ray irradiation. Chem Mater 17:4574–4576

    Article  CAS  Google Scholar 

  • Hutchinson RA, Beuermann S, Paquet DA Jr, McMinn JH, Jackson C (1998) Determination of free-radical propagation rate coefficients for cycloalkyl and functional methacrylates by pulsed-laser polymerization. Macromolecules 31:1542–1547

    Article  CAS  Google Scholar 

  • Ide N, Fukuda T (1997) Nitroxide-controlled free-radical copolymerization of vinyl and divinyl monomers. Evaluation of pendant-vinyl reactivity. Macromolecules 30:4268–4271

    Article  CAS  Google Scholar 

  • Ide N, Fukuda T (1999) Nitroxide-controlled free-radical copolymeriza- tion of vinyl and divinyl monomers. 2. Gelation. Macromolecules 32:95–99

    Article  CAS  Google Scholar 

  • Isaure F, Cormack PAG, Graham S, Sherrington DC, Armes SP, Buetuen V (2004) Synthesis of branched poly(methyl methacrylate)s via controlled/living polymerisations exploiting ethylene glycol dimethacrylate as branching agent. Chem Commun 9:1138–1139

  • Jun L, Min Y, Jiuqiang L, Hongfei H (2001) Preirradiation grafting polymerization of DMAEMA onto cotton cellulose fabrics. J App Polym Sci 81:3578–3581

    Article  Google Scholar 

  • Kato K, Uchida E, Kang E-T, Uyama Y, Ikada Y (2003) Polymer surface with graft chains. Progres Polym Sci 28:209–259

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kodama Y, Barsbay M, Güven O (2014) Radiation-induced and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces. Radiat Phys Chem 94:98–104

    Article  CAS  Google Scholar 

  • Krassig HA (1993) Cellulose—structure, accessibility and reactivity. In: Huglin MB (ed) Polymer monographs, vol 11. Gordon and Breach Science Publishers, Yverdon

    Google Scholar 

  • Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of e-caprolactone as a case study. Cellulose 18:607–617

    Article  CAS  Google Scholar 

  • Laricheva VP (2008) Effect of ionizing radiation on epoxy oligomers of different structures and manufacture of new promising materials on their base. Radiat Phys Chem 77:29–33

    Article  CAS  Google Scholar 

  • Lindqvist J, Nyström D, Östmark E, Antoni P, Carlmark A, Johansson M, Hult A, Malmström E (2008) Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Biomacromolecules 9:2139–2145

    Article  CAS  Google Scholar 

  • Liu B, Kazlauciunas A, Guthrie JT, Perrier S (2005) One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 38:2131–2136

    Article  CAS  Google Scholar 

  • Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3:1702–1713

    Article  Google Scholar 

  • Morandia G, Thielemans W (2012) Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym Chem 3:1402–1407

    Article  Google Scholar 

  • Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656

    Article  CAS  Google Scholar 

  • Roa-Luna M, Jaramillo-Soto G, Castañeda-Flores PV, Vivaldo-Lima E (2010) Copolymerization kinetics of styrene and divinylbenzene in the presence of S-thiobenzoyl thioglycolic acid as RAFT agent. Chem Eng Technol 33:1893–1899

    Article  CAS  Google Scholar 

  • Taton D, Baussard J-F, Dupayage L, Poly J, Gnanou Y, Ponsinet V (2006) Water soluble polymeric nanogels by xanthate-mediated radical crosslinking copolymerization. Chem Commun 18:1953–1955

  • Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 14:18–25

    Article  Google Scholar 

  • Vo C-D, Rosselgong J, Armes SP, Billingham NC (2007) RAFT synthesis of branched acrylic copolymers. Macromolecules 40:7119–7125

    Article  CAS  Google Scholar 

  • Yu Q, Zeng F, Zhu S (2001) Atom transfer radical polymerization of poly(ethylene glycol) dimethacrylate. Macromolecules 34:1612–1618

    Article  CAS  Google Scholar 

  • Zhao P, Yan Y, Feng X, Liu L, Wang C, Chen Y (2012) Highly efficient synthesis of polymer brushes with PEO and PCL as side chains via click chemistry. Polymer 53:1992–2000

    Article  CAS  Google Scholar 

  • Zhu J, Zhou D, Zhu X, Chen G (2004) Reversible addition–fragmentation chain transfer polymerization of glycidyl methacrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. J Polym Sci, Part A: Polym Chem 42:2558–2565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.B. appreciates the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK, Project Number: 113Z889) and Hacettepe University Scientific Research Projects Coordination Unit (Project Number: 1532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olgun Güven.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsbay, M., Kodama, Y. & Güven, O. Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate. Cellulose 21, 4067–4079 (2014). https://doi.org/10.1007/s10570-014-0416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0416-y

Keywords

Navigation