Skip to main content
Log in

Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose has the potential to be used as a biodegradable, reinforcing component in composites due to its high strength and crystallinity. However it is often problematic to use in this context as it is difficult to separate its extensively bonded fibril network. This means it can be difficult for it to be incorporated as a fine dispersion into a composite and for the true benefits of the nanofibres to be realised in terms of physical property improvement in a conventional polymer format such as injection moulding. The method of sonication (using a range of experimental conditions) was utilised to harvest fibrils from the interwoven mesh of the cellulose pellicle, and then disperse them in different solvents to allow blending and subsequent casting. The novel step identified in this process was the sonication harvesting of the nanofibres undertaken on the highly hydrated as-received pellicle fresh from the reaction media (not the dried pellicle which could not be easily separated in the selected solvent). This unique step of harvesting directly from the fresh pellicle together with conventional sonication for dispersion in chloroform produced a bacterial cellulose/poly-3-hydroxybutyrate nanocomposite which showed excellent nanofibre dispersion and significant improvement in mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418

    Article  CAS  Google Scholar 

  • Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    Article  CAS  Google Scholar 

  • Cai Z, Yang G (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184

    Article  CAS  Google Scholar 

  • Cai Z, Yang G, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249

    Article  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chen WS, Yu HP, Liu YX, Hai YF, Zhang MX, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical–ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  • Cheng Q, Wang SQ, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Cheng QZ, Wang SQ, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A Appl Sci Manuf 40:218–224

    Article  Google Scholar 

  • Cheng QZ, Wang SQ, Han QY (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115:2756–2762

    Article  CAS  Google Scholar 

  • Fink HP, Purz HJ, Bohn A, Kunze J (1997) Investigation of the supramolecular structure of never dried bacterial cellulose. Macromol Symp 120:207–217

    Article  CAS  Google Scholar 

  • Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in situ process. Mater Lett 64:901–904

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Guhados G, Wan WK, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  • Jipa IM, Dobre L, Stroescu M, Stoica-Guzun A, Jinga S, Dobre T (2012) Preparation and characterization of bacterial cellulose-poly(vinyl alcohol) films with antimicrobial properties. Mater Lett 66:125–127

    Article  Google Scholar 

  • Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohydr Polym 87:2464–2469

    Article  CAS  Google Scholar 

  • Kibedi-Szabo CZ, Stroescu M, Stoica-Guzun A, Jinga SI, Szilveszter S, Jipa I, Dobre T (2012) Biodegradation behavior of composite films with poly (vinyl alcohol) matrix. J Polym Environ 20:422–430

    Article  CAS  Google Scholar 

  • Martínez-Sanz M, Villano M, Oliveira C, Albuquerque MGE, Majone M, Reis M, Lopez-Rubio A, Lagaron JM (2014) Characterization of poly hydroxyalkanoates synthesized from microbial mixed cultures and of their nano biocomposites with bacterial cellulose nano whiskers. New Biotechnol 31:364–376

    Article  Google Scholar 

  • Millon LE, Oates CJ, Wan WK (2009) Compression properties of polyvinyl alcohol-bacterial cellulose nanocomposite. J Biomed Mater Res Part B Appl Biomater 90B:922–929

    Article  CAS  Google Scholar 

  • Price GJ, West PJ, Smith PF (1994) Control of polymer structure using power ultrasound. Ultrason Sonochem 1:S51–S57

    Article  CAS  Google Scholar 

  • Randriamahefa S, Renard E, Guerin P, Langlois V (2003) Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by Pseudomonas grown on sodium octanoate. Biomacromolecules 4:1092–1097

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  • Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622

    Article  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air liquid interface of a culture of Acetobacter Xylinum. J Gen Microbiol 11:123–129

    Article  CAS  Google Scholar 

  • Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Part A Polym Chem 42:463–470

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V (2011) Biodegradation of poly(vinyl alcohol) and bacterial cellulose composites by Aspergillus niger. J Polym Environ 19:69–79

    Article  CAS  Google Scholar 

  • Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197

    Article  CAS  Google Scholar 

  • Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  • Wang SQ, Cheng QZ (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270–1275

    Article  CAS  Google Scholar 

  • Woehl MA, Canestraro CD, Mikowski A, Sierakowski MR, Ramos LP, Wypych F (2010) Bionanocomposites of thermoplastic starch reinforced with bacterial cellulose nanofibres: effect of enzymatic treatment on mechanical properties. Carbohydr Polym 80:866–873

    Article  CAS  Google Scholar 

  • Wong SS, Kasapis S, Tan YM (2009) Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydr Polym 77:280–287

    Article  CAS  Google Scholar 

  • Yang L, Zhang HY, Yang Q, Lu DN (2012) Bacterial cellulose-poly(vinyl alcohol) nanocomposite hydrogels prepared by chemical crosslinking. J Appl Polym Sci 126:E244–E250

    Article  CAS  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Monash University Centre for Electron Microscopy for the use of their equipment. This work was funded by a Julius Career award from the CSIRO Office of the Chief Executive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Dean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruka, D.R., Simon, G.P. & Dean, K. Harvesting fibrils from bacterial cellulose pellicles and subsequent formation of biodegradable poly-3-hydroxybutyrate nanocomposites. Cellulose 21, 4299–4308 (2014). https://doi.org/10.1007/s10570-014-0415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0415-z

Keywords