Skip to main content
Log in

Hydrolysis behavior of various crystalline celluloses treated by cellulase of Tricoderma viride

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellobiose and glucose are valuable products that can be obtained from enzymatic hydrolysis of cellulose. This study discusses changes in the crystalline form of celluloses to enhance the production of sugars and examines the effect on structural properties during enzymatic hydrolysis. Various crystalline celluloses consisting of group I (cell I, cell IIII, cell IVI) and group II (cell II, cell IIIII, cell IVII) of similar DPs were prepared as starting materials. The similar DP values allowed a more direct comparison of the hydrolysis yields. The outcomes were analyzed and evaluated based on the residues and supernatants obtained from the treatment. As a result: (1) action of the cellulase of Trichoderma viride decreased both DP and crystallinity, with greater changes in group II celluloses, (2) the polymorphic interconversion process that occurred for cell IIII, cell IVI, cell IIIII and cell IVII during the treatment was independent of the enzymatic hydrolysis, thus, the hydrolysis behaviors depended on the starting material of the celluloses, and (3) higher sugar production was obtained from cell IIII and group II. Therefore, the hydrolysis behavior of the various crystalline celluloses depended on the particular polymorph of the starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah R, Ueda K, Saka S (2013) Decomposition behaviors of various crystalline celluloses as treated by semi-flow hot-compressed water. Cellulose 20:2321–2333

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Beckham GT, Matthews JF, Peters B, Bomble YJ, Himmel ME, Crowley MF (2011) Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs. J Phys Chem B 115:4118–4127

    Article  CAS  Google Scholar 

  • Bommarius A, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y (2008) Cellulase kinetics as a function of cellulose pretreatment. Metab Eng 10:370–381

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296

    Article  CAS  Google Scholar 

  • Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317

    Article  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50  long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325

    Article  CAS  Google Scholar 

  • Evans R, Wearne RH, Adrian FA (1989) Molecular weight distribution of cellulose as its tricarbanilate by high performance size exclusion chromatography. J Appl Polym Sci 37:3291–3303

    Article  CAS  Google Scholar 

  • Fan LT, Lee YH, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 23:177–199

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  CAS  Google Scholar 

  • Hsu T-A (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Bristol, pp 179–195

    Google Scholar 

  • Igarashi K, Wada M, Hori R, Samejima M (2006) Surface density of cellobiohydrolase on crystalline celluloses—a critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J 273:2869–2878

    Article  CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Kadam KL, Rydholm EC, McMillan JD (2004) Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic. Biotechnol. Progr. 20:698–705

    Article  CAS  Google Scholar 

  • Kumar S, Gupta R, Lee YY, Gupta RB (2010) Cellulose pretreatment in subcritical water: effect of temperature on molecular structure and enzymatic reactivity. Bioresour Technol 101:1337–1347

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray Structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Lee SB, Kim IH, Ryu DDY, Taguchi H (1983) Structural properties of cellulose and cellulase reaction mechanism. Biotechnol Bioeng 25:33–51

    Article  CAS  Google Scholar 

  • Loeb L, Segal L (1955) Studies of the ethylenediamine-cellulose complex. I. Decomposition of the complex by solvents. J Polym Sci 15:343–354

    Article  CAS  Google Scholar 

  • Lokhande HT, Shukla SR, Chidambareswaran PK, Patil NB (1977) Ethylenediamine-induced conversion of cellulose I to cellulose III. J Polym Sci Polym Lett Ed 15:97–99

    Article  CAS  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4(41):1–16

    Google Scholar 

  • Mormann W, Michel U (2002) Improved synthesis of cellulose carbamates without by-products. Carbohydr Polym 50:201–208

    Article  CAS  Google Scholar 

  • Nishimura H, Sarko A (1987) Mercerization of cellulose. IV. Mechanism of mercerization and crystallite sizes. J Appl Polym Sci 33:867–874

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(10):1–10

    Google Scholar 

  • Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  CAS  Google Scholar 

  • Reese ET, Segal L, Tripp VW (1957) The effect of cellulose on the degree of polymerization of cellulose and hydrocellulose. Text Res J 27:626–632

    Article  CAS  Google Scholar 

  • Sasaki T, Tanaka T, Nanbu N, Sato Y, Kainuma K (1979) Correlation between X-ray diffraction measurements of cellulose crystalline structure and the susceptibility to microbial cellulose. Biotechnol Bioeng 21:1031–1042

    Article  CAS  Google Scholar 

  • Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321

    Article  CAS  Google Scholar 

  • Sulzenbacher G, Schülein M, Davies GJ (1997) Structure of the endoglucanase I from Fusarium oxysporum: native, cellobiose, and 3,4-epoxybutyl β-D-cellobioside-inhibited forms, at 2.3 Å resolution. Biochemistry 36:5902–5911

    Article  CAS  Google Scholar 

  • TAPPI Standard Methods T222 om-88 (1988)

  • van Wyk JPH (1997) Cellulose hydrolysis and cellulase adsorption after pretreatment of cellulose materials. Biotechnol Tech 11:443–445

    Article  CAS  Google Scholar 

  • Vanderghem C, Boquel P, Blecker C, Paquot M (2010) A multistage process to enhance cellobiose production from cellulosic materials. Appl Biochem Biotechnol 160:2300–2307

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  • Wada M, Kwon GJ, Nishiyama Y (2008) Structure and thermal behavior of a cellulose I-ethylenediamine complex. Biomacromolecules 9:2898–2904

    Article  CAS  Google Scholar 

  • Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548

    Article  CAS  Google Scholar 

  • Ward RJ (2011) Cellulase engineering for biomass saccharification. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 135–151

    Chapter  Google Scholar 

  • Weimer PJ, French AD, Calamari TA Jr (1991) Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol 57:3101–3106

    CAS  Google Scholar 

  • Yang J, Zhang X, Yong Q, Yu S (2010) Three-stage hydrolysis to enhance enzymatic saccharifcation of steam-exploded corn stover. Bioresour Technol 101:4930–4935

    Article  CAS  Google Scholar 

  • Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support that was given by the Kyoto University Global GCOE program of ‘Energy Science in the Age of Global Warming’, for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Saka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, R., Saka, S. Hydrolysis behavior of various crystalline celluloses treated by cellulase of Tricoderma viride . Cellulose 21, 4049–4058 (2014). https://doi.org/10.1007/s10570-014-0410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0410-4

Keywords

Navigation