Skip to main content

Surface-esterified cellulose fiber in a polypropylene matrix: impact of esterification on crystallization kinetics and dispersion

Abstract

Cellulose powders hydrophobized by surface esterification with carboxylic acids with different chain lengths (3, 10 and 18 carbons) were dispersed in a polypropylene matrix. Quality of the dispersion and nucleation activity of the filler were investigated by means of differential scanning calorimetry and optical microscopy. The results showed that the esterification decreases the crystallization rate in case of cellulose esterified with propionic or decanoic acid. On the other hand, the oleic acid ester demonstrated slightly higher crystallization rates than the unmodified cellulose, which was ascribed primarily to the newly arisen non-esterified surface after disintegration of the filler. Optical microscopy with hot stage showed the high nucleation ability of the natural cellulose fiber and its suppression in case of esterified surfaces. A complete inability to nucleate polypropylene crystallization was observed in case of decanoyl ester, while the other two retained some activity, but lower than that of the natural fiber. Finally, analysis of the filler dispersion and distribution revealed that the decanoyl and octadecanoyl esters disintegrate during melt mixing, while both dispersion and distribution of the fibers modified with propionic acid are poor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Borysiak S (2009) Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polym Bull 64:275–290. doi:10.1007/s00289-009-0202-4

    Article  Google Scholar 

  2. Borysiak S (2012) Fundamental studies on lignocellulose/polypropylene composites: effects of wood treatment on the transcrystalline morphology and mechanical properties. J Appl Polym Sci 127:1309–1322. doi:10.1002/app.37651

    Article  Google Scholar 

  3. Borysiak S, Doczekalska B (2009) The influence of chemical modification of wood on its nucleation ability in polypropylene composites. Polimery 54:820–827

    CAS  Google Scholar 

  4. Chvatalova L, Navratilova J, Cermak R, Raab M, Obadal M (2009) Joint effects of molecular structure and processing history on specific nucleation of isotactic polypropylene. Macromolecules 42:7413–7417. doi:10.1021/ma9005878

    CAS  Article  Google Scholar 

  5. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. doi:10.1002/pen.10846

    CAS  Article  Google Scholar 

  6. Gray DG (2007) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301. doi:10.1007/s10570-007-9176-2

    Article  Google Scholar 

  7. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi:10.1016/S0079-6700(01)00022-3

    CAS  Article  Google Scholar 

  8. Janicek M, Krejci O, Cermak R (2013) Thermal stability of surface-esterified cellulose and its composite with polyolefinic matrix. Cellulose 20:2745–2755. doi:10.1007/s10570-013-0070-9

    CAS  Article  Google Scholar 

  9. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18. doi:10.1016/j.carbpol.2011.04.043

    CAS  Article  Google Scholar 

  10. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. doi:10.1016/j.carbpol.2007.05.040

    CAS  Article  Google Scholar 

  11. Lamberti G (2011) Isotactic polypropylene crystallization: analysis and modeling. Eur Polym J 47:1097–1112. doi:10.1016/j.eurpolymj.2011.02.005

    CAS  Article  Google Scholar 

  12. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization, and melting of macromolecules. Macromolecules 35:3601–3613. doi:10.1021/ma011122u

    CAS  Article  Google Scholar 

  13. Sbirrazzuoli N, Vincent L, Mija A, Guigo N (2009) Integral, differential and advanced isoconversional methods. Chemom Intell Lab Syst 96:219–226. doi:10.1016/j.chemolab.2009.02.002

    CAS  Article  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    CAS  Article  Google Scholar 

  15. Son SJ, Lee YM, Im SS (2000) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulase. J Mater Sci 5:5767–5778. doi:10.1023/A:1004827128747

    Article  Google Scholar 

  16. Uschanov P, Johansson LS, Maunu SL, Laine J (2010) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404. doi:10.1007/s10570-010-9478-7

    Article  Google Scholar 

  17. Vyazovkin S, Linert W (1995) Kinetic analysis of reversible thermal decomposition of solids. Int J Chem Kinet 27:73–84. doi:10.1002/kin.550270109

    CAS  Article  Google Scholar 

  18. Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107:882–888. doi:10.1021/jp026592k

    CAS  Article  Google Scholar 

  19. Vyazovkin S, Wight CA (1997) Kinetics in solids. Annu Rev Phys Chem 48:125–149. doi:10.1146/annurev.physchem.48.1.125

    CAS  Article  Google Scholar 

  20. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi:10.1016/j.tca.2011.03.034

    CAS  Article  Google Scholar 

  21. Wang C, Liu CR (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40:289–298. doi:10.1016/S0032-3861(98)00240-7

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge a financial support of this work by internal grants of Tomas Bata University in Zlin, No. IGA/FT/2013/012 and No. IGA/FT/2014/014, funded from the resources of specific university research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miroslav Janicek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janicek, M., Polaskova, M., Holubar, R. et al. Surface-esterified cellulose fiber in a polypropylene matrix: impact of esterification on crystallization kinetics and dispersion. Cellulose 21, 4039–4048 (2014). https://doi.org/10.1007/s10570-014-0404-2

Download citation

Keywords

  • Cellulose
  • Esterification
  • Hydrophobization
  • Crystallization kinetics
  • Dispersion
  • Composite