Abstract
Anatomical and physico-chemical properties of residual natural fibers (sugarcane bagasse, coconut fibers and peanut hulls) were characterized in order to evaluate their potential for use in the production of particleboard. The bulk density was determined by helium pycnometer and the chemical characteristics by using an electronic pH meter (for pH determination) on fibers dissolved in acidic and neutral detergents (to determine the levels of cellulose, hemicellulose and lignin). The anatomical characteristics were established using scanning electron microscopy coupled with an X-ray detector system, as well as energy dispersive X-ray spectroscopy. Results indicated similarities and differences between physico-chemical and anatomical characteristics of the residual lignocellulosic fibers when compared with the Pinus sp. wood commercially employed in particleboard production. Bulk density and pH for residual lignocellulosic fibers and Pinus sp. wood presented analogous values. Similar amounts of cellulose and lignin were identified between waste fibers and Pinus sp. wood. The presence of silica was identified in coconut fiber, peanut hull and sugarcane bagasse waste fibers, and may affect the mechanical characteristics of panels. Coconut and sugarcane bagasse fibers show surface pores with diameters ranging from 1.2 to 2.1 μm, below the 5 μm identified for Pinus sp. wood. Both fibers present pores distributed over their entire surface, whereas peanut hull fibers have no pores on their surface. This characteristic contributes to resin dispersion among particles, reflecting positively on the physical–mechanical properties of the panels. Particleboards produced with residual lignocellulosic fibers present similar physical–mechanical properties to those of Pinus sp. wood panels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
American National Standards Institute—ANSI A208 (1993) Mat-formed wood particleboard: specification. Gaithersburg
Anselmo OL, Clissiane SVP, Alexssandra NF et al (2009) Redução dos teores de hemicelulose, celulose e lignina da casca de amendoim através da fermentação em estado sólido. Reunião Anual da Sociedade Brasileira de Química. http://sec.sbq.org.br/cdrom/33ra/resumos/T0035-2.pdf. Accessed 14 may 2014
Associação Brasileira de Normas Técnicas—14810 (2006) Chip panel sheets-Part 3: testing methods, terminology. Rio de Janeiro
Barros Filho RM, Mendes LM, Novack KM et al (2011) Hybrid chipboard panels based on sugarcane bagasse, urea formaldehyde and melamine formaldehyde resin. Ind Crops Prod 33:369–373
Battistelle RAG, Marcilio C, Lahr FAR (2009) Emprego do bagaço da cana-de-açúcar (Saccharum officinarum) e das folhas caulinares do bambu da espécie Dendrocalamus giganteus na produção de chapas de partículas. Revista Minerva 3:297–305
Belini UL, Tomazello Filho M, Louzada JLPC et al (2012) Pilot study for MDF manufacture from sugarcane bagasse. Eur J Wood Wood Prod 70:537–539
Bertolini MS (2011) Emprego de resíduos de Pinus SP tratado com preservante CCB na produção de chapas de partículas homogêneas utilizando resina poliuretana à base de mamona. Dissertation, University of São Paulo
Bertolini MS, Lahr FAR, Nascimento MF et al (2013) Accelerated artificial aging of particleboards from residues of CCB treated Pinus sp. and castor oil resin. Mater Res 16:293–303
Brito EO, Sá-Rocha JD, Vidaurre GB et al (2004) Propriedades de chapas produzidas com resíduos do fruto de coco e partículas de pinus. Revista Floresta e Ambiente 11:01–06
Canilha L, Carvalho W, Rocha GJM et al (2007) Caracterização do bagaço de cana-de-açúcar in natura, extraído com etanol ou ciclohexano/etanol. In. CONGRESSO BRASILEIRO DE QUÍMICA, 47, Natal-Brasil. Anais
Caraschi JC, Leão AL, Coiado Chamma PV (2009) Painéis produzidos a partir de resíduos sólidos para aplicação na arquitetura. Polímeros Ciência e Tecnologia 19:47–53
Commercial Standard (1968) Mat formed wood particleboard. CS 236–266
Contreras WM (2006) Diseño de tableros de partículas de caña brava y adhesivo fenol—formaldehído. Rev For Lat 39:39–55
Corradini E, Rosa MF, Macedo BP, Paladin PD, Mattoso LHC (2009) Composição química, propriedades mecânicas e térmicas da fibra de frutos de cultivares de coco verde. Revista Brasileira de Fruticultura 31:837–846
Fiorelli J, Curtolo DD, Barrero NG et al (2012) Particulate composite based on coconut fiber and castor oil polyurethane adhesive: an eco-efficient product. Ind Crops Prod 40:69–75
Fiorelli J, Sartori DL, Cravo JCM et al (2013) Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite. Mater Res 16:439–446
Gatani MP, Fiorelli J, Medina JC et al (2013) Technical production viability and properties of particleboard made with peanut husks. Revista Matéria 18:1286–1293
Hillig E (2000) Qualidade de chapas aglomeradas estruturais, fabricadas com madeiras de Pinus, Eucalipto e Acácia negra, puras ou misturadas, coladas com tanino-formaldeido. Dissertation, University Federal of Santa Catarina
Iwakiri S (2005) Painéis de madeira reconstituída. FUPEF, Curitiba
Iwakiri S, Shimizu J, Silva JC et al (2004) Produção de painéis de madeira aglomerada de Grevillea robusta A. Cunn. ex R. Br. Revista Árvore 28:883–887
Lopes YLV, Mori FA, Mendes LM et al (2005) Evaluation of the technical viability of Eucalyptus grandis Hill ex Maiden wood and barks in the production of cement-bonded particleboard. Scientia Forestalis 67:111–122
Moura MJ, Figueiredo MM (2002) Aplicação das técnicas de picnometria de gás e de porosimetria de mercúrio à caracterização da madeira de E. globulus. Labgran, Coimbra
Okino E, Andahur JPV, Santana MAE, Souza MR (1997) Physico-mechanical properties of chemically modified sugarcane bagasse particle panels. Scientia Forestalis 52:35–42
Pablo AA, Perez EB, Ella AB (1975) Development of particleboard on a pilot-plant and semi-commercial scale using plantation and secondary wood species and agricultural fibrous waste materials. Forest Products Research and Industries Development Commission, Philippines
Passos PRA (2005) Destinação sustentável de cascas de coco verde (Cocos nucifera): obtenção de telhas e chapas de partículas. Thesis, University Federal of the Rio de Janeiro
Poleto SFS, Varanda LD, Nascimento MF et al (2013) Evaluation of the mechanical properties of particleboards manufactured with waste of pinus elliottii tree pruning. Int J Compos Mater 3:56–60
Rowell RM, Han JS, Rowell JS (2000) Characterization and factors affecting fiber properties. In: Frollini E (ed) Natural polymers and agrofibers based composites. Embrapa, São Carlos, pp 115–134
Salman AKD, Ferreira ACD, Soares JPG et al (2010) Metodologias para avaliação de alimentos para ruminantes domésticos. Embrapa, Porto Velho
Van Soest PJ (1994) Nutritional ecology of the ruminant. Cornell University Press, New York
Varanda LD, Nascimento MF, Christoforo AL et al (2013) Oat hulls as addition to high density panels production. Mater Res 16:1355–1361
Vital BR (1973) Effects of species and panel densities on properties of hardwood particleboard. Dissertation, University of Wisconsin
Widyorini R (2005) Manufacture and properties of binderless particleboard from bagasse: effects of raw material type, storage methods and manufacturing process. J Wood Sci 51:648–654
Acknowledgments
Research Foundation of the São Paulo State—FAPESP; National Council for Scientific and Technological Development—CNPq; Financier of Studies and Projects—FINEP and Coordination of Improvement of Higher Education Personnel—CAPES.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fiorelli, J., Gomide, C.A., Lahr, F.A.R. et al. Physico-chemical and anatomical characterization of residual lignocellulosic fibers. Cellulose 21, 3269–3277 (2014). https://doi.org/10.1007/s10570-014-0398-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-014-0398-9