Cellulose

, Volume 21, Issue 5, pp 3541–3550 | Cite as

Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofibre colloids

Original Paper

Abstract

This work examines the addition of cationic polymers, cationic polyacrylamide (CPAM) and polyamide–amine–epichlorohydrin (PAE), to cellulose nanofibres to produce superior forming characteristics. The addition of 2 mg of high MW CPAM/g of nanofibres halved the drainage time to under 1 min at 0.1 wt% solids content due to increasing the floc size and the fibre forming a bulky and porous filter medium during drainage. The more open structure created in the wet state was partially preserved during the drying process, reducing the sheet density from 760 to 680 kg/m3, at the highest level of polymer addition. The addition of CPAM resulted in significant additional bridging between nanofibres, which then substantially increased the non-uniformity of the filter medium. PAE addition at 10 mg/g of micro fibrillated cellulose (MFC), also reduced drainage time, while increasing retention, but without changing the sheet uniformity. Wet strength increased continuously with PAE addition level, reaching 31.6 kN m/kg at the highest level of 20 mg of PAE/g of MFC.

Keywords

Cellulose nanofibres CPAM PAE Strength Sheet preparation Gel point 

References

  1. Ahola S, Österberg M, Laine J (2008) Cellulose nanofibrils—adsorption with poly (amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 15(2):303–314. doi:10.1007/s10570-007-9167-3 CrossRefGoogle Scholar
  2. Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28(6):837–844CrossRefGoogle Scholar
  3. Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(03):201–207. doi:10.1557/mrs2010.652 CrossRefGoogle Scholar
  4. Celzard A, Fierro V, Pizzi A (2008) Flocculation of cellulose fibre suspensions: the contribution of percolation and effective-medium theories. Cellulose 15(6):803–814CrossRefGoogle Scholar
  5. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u CrossRefGoogle Scholar
  6. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.1021/bm800038n CrossRefGoogle Scholar
  7. Hubbe MA, Heitmann JA (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacture. Bioresources 2(3):500–533Google Scholar
  8. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238. doi:10.1016/j.indcrop.2012.03.018 CrossRefGoogle Scholar
  9. Joutsimo OP, Asikainen S (2013) Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioResources 8(2):2719–2737CrossRefGoogle Scholar
  10. Li T-Q, Ödberg L (1996) Flow properties of cellulose fiber suspensions flocculated by cationic polyacrylamide. Colloids Surf A 115:127–135CrossRefGoogle Scholar
  11. Martinez DM, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson JA, Ruth TJ, Kerekes RJ (2001) Characterizing the mobility of papermaking fibres during sedimentation. In: Baker CF (ed) The Science of Papermaking, Transactions of the 12th Fundamental Reseach Symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, Lancaster, pp 225–254Google Scholar
  12. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80(1):155–159. doi:10.1007/s00339-003-2225-2 CrossRefGoogle Scholar
  13. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. doi:10.1002/adma.200803174 CrossRefGoogle Scholar
  14. Norman RJ (1965) Dependence of sheet properties on formation and forming variables, in consolidation of the paper web. In: Bolam F (ed) Transactions of the Third Fundamental Research Symposium, Cambridge, pp 269–298Google Scholar
  15. Operating manual—The Paper Perfect, OpTest, Canada 2005Google Scholar
  16. Roberts JC (1996) The chemistry of paper. The Royal Society of Chemistry, CambridgeGoogle Scholar
  17. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.1021/bm100490s CrossRefGoogle Scholar
  18. Seo YB, Choi CH, Jeon Y (2003) Effect of mechanical pretreatment on fibre properties. Appita J 56(5):371–375Google Scholar
  19. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  20. Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848. doi:10.1007/s10570-010-9424-8 CrossRefGoogle Scholar
  21. Su J, Mosse WJ, Sharman S, Batchelor W, Garnier G (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20:1925–1935. doi:10.1007/s10570-013-9955-x CrossRefGoogle Scholar
  22. Swerin A (1998) Rheological properties of cellulosic fibre suspensions flocculated by cationic polyacrylamides. Colloids Surf A 133(3):279–294. doi:10.1016/S0927-7757(97)00212-4 CrossRefGoogle Scholar
  23. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.1007/s10570-008-9244-2 CrossRefGoogle Scholar
  24. Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17(5):1005–1020. doi:10.1007/s10570-010-9431-9 CrossRefGoogle Scholar
  25. Varanasi S, Batchelor W (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20(1):211–215. doi:10.1007/s10570-012-9794-1 CrossRefGoogle Scholar
  26. Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20(4):1885–1896. doi:10.1007/s10570-013-9972-9 CrossRefGoogle Scholar
  27. Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wang X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19(2):561–574. doi:10.1007/s10570-011-9641-9 CrossRefGoogle Scholar
  28. Zhao YQ (2003) Correlations between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering. Chem Eng J 92(1–3):227–235. doi:10.1016/S1385-8947(02)00253-X CrossRefGoogle Scholar
  29. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi:10.1002/adem.200400097 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Australian Pulp and Paper Institute, Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations