Skip to main content

Advertisement

Log in

Synthesis of chitosan-graft-poly(sodium-l-glutamate) for preparation of protein nanoparticles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this manuscript we have designed a synthetic approach for the preparation of a series of chitosan-graft-poly(l-glutamate) copolymers with different lengths of poly(l-glutamate) grafts. First, organosulfonic chitosan salt, soluble in DMSO, was prepared in order to effectively initiate ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride. The chitosan-graft-poly(γ-benzyl-l-glutamate) copolymers were fully deprotected by applying tetrabutylammonium hydroxide. The molar mass characteristics and chemical composition of graft copolymers with various lengths of polypeptide grafts were determined by SEC-MALS, FT-IR and various NMR spectroscopic techniques. The synthesized chitosan-graft-poly(sodium-l-glutamate) copolymers were used in combination with trimethyl chitosan for the preparation of nanoparticles (NPs) of a recombinant granulocyte colony-stimulating factor (GCSF). The suspensions of NPs with typical average diameter of 200–300 nm were obtained with polydispersity index values below 0.26. The achieved loading efficiency was up to 95 % and the final loading of GCSF protein in NPs was up to 45 %. The time, temperature and pH stability of NPs was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

AcOH:

Acetic acid

AE:

Association efficiency

BGlu:

γ-Benzyl-l-glutamate

Chi:

Chitosan

Chi-g-PBGlu:

Chitosan-graft-poly(γ-benzyl-l-glutamate)

Chi-g-PGlu:

Chitosan-graft-poly(l-glutamate)

COSY:

Correlation spectroscopy

CSA:

(±)Camphor-10-sulfonic acid

DCA:

Dichloroacetic acid

DLS:

Dynamic light-scattering

DMAc:

N,N-Dimethyl acetamide

DMF:

N,N-Dimethyl formamide

DMSO:

Dimethyl sulfoxide

d H :

Average hydrodynamic diameter

dn/dc :

Refractive-index increment

Đ M :

Dispersity

FL:

Final loading

FT-IR:

Fourier transform infrared spectroscopy

GCSF:

Granulocyte colony-stimulating factor

GE:

Grafting efficiency

gHSQCad:

Gradient Heteronuclear Single Quantum Coherence adiabatic version

GlcN:

Glucosamine

Glu:

Glutamate repeating unit

IL:

Initial loading

MALS:

Multi-angle laser light-scattering

M n :

Number-average molar mass

MSA:

Methanesulfonic acid

M w :

Weight-average molar mass

NaAc:

Sodium acetate

NCA:

N-Carboxyanhydride

NMR:

Nuclear magnetic resonance spectroscopy

NP:

Nanoparticle

PBGlu:

Poly(γ-benzyl-l-glutamate)

PdI:

Polydispersity index

PEG:

Poly(ethylene glycol)

PGlu:

Poly(l-glutamate)

pI:

Isoelectric point

RI:

Refractive index

ROP:

Ring-opening polymerization

SEC:

Size-exclusion chromatography

TBAH:

Tetrabutylammonium hydroxide

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

TMC:

Trimethyl chitosan

TMS:

Tetramethylsilane

TMSI:

Trimethylsilyl iodide

TMSPA:

3-Trimethylsilyl-2,2′,3,3′-d 4-propanoic acid sodium salt

References

  • Abdel-Magid AF, Cohen JH, Maryanoff CA et al (1998) Hydrolysis of polypeptide esters with tetrabutylammonium hydroxide. Tetrahedron Lett 39:3391–3394. doi:10.1016/S0040-4039(98)00511-5

    Article  CAS  Google Scholar 

  • Ahmed KEAM, Chen W-Q, John JPP et al (2010) Complete sequencing of the recombinant granulocyte-colony stimulating factor (filgrastim) and detection of biotinylation by mass spectrometry. Amino Acids 38:1043–1049. doi:10.1007/s00726-009-0312-1

    Article  CAS  Google Scholar 

  • Aldana AA, Martinelli M, Strumia M (2010) Synthesis and properties of dendronized chitosan. Macromol Symp 298:99–107. doi:10.1002/masy.201000035

    Article  CAS  Google Scholar 

  • Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414. doi:10.1016/j.ijbiomac.2008.09.007

    Article  CAS  Google Scholar 

  • Arakawa T, Horan TP, Leong K et al (1995) Structure and activity of granulocyte colony-stimulating factor derived from CHO cells containing cDNA coding for alternatively spliced sequences. Arch Biochem Biophys 316:285–289. doi:10.1006/abbi.1995.1039

    Article  CAS  Google Scholar 

  • Babin J, Taton D, Brinkmann M, Lecommandoux S (2008) Synthesis and self-assembly in bulk of linear and mikto-arm star block copolymers based on polystyrene and poly(glutamic acid). Macromolecules 41:1384–1392. doi:10.1021/ma702071y

    Article  CAS  Google Scholar 

  • Bai Y, Ann DK, Shen W-C (2005) Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci USA 102:7292–7296. doi:10.1073/pnas.0500062102

    Article  CAS  Google Scholar 

  • Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409. doi:10.1021/bm801513e

    Article  CAS  Google Scholar 

  • Bodnar M, Hartmann JF, Borbely J (2006) Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules 7:3030–3036. doi:10.1021/bm0605053

    Article  CAS  Google Scholar 

  • Brulc B, Žagar E, Gadzinowski M et al (2011) Homo and block copolymers of poly(β-benzyl-L-aspartate)s and poly(γ-benzyl-L-glutamate)s of different architectures. Macromol Chem Phys 212:550–562. doi:10.1002/macp.201000710

    Article  CAS  Google Scholar 

  • Carreira AS, Gonçalves FAMM, Mendonça PV et al (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydr Polym 80:618–630. doi:10.1016/j.carbpol.2009.12.047

    Article  CAS  Google Scholar 

  • Chen M-C, Mi F-L, Liao Z-X et al (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65:865–879. doi:10.1016/j.addr.2012.10.010

    Article  CAS  Google Scholar 

  • Cheng J, Deming TJ (2012) Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. In: Deming T (ed) Pept.-based mater. Springer, Berlin, pp 1–26

    Google Scholar 

  • Chi P, Wang J, Liu C (2008) Synthesis and characterization of polycationic chitosan-graft-poly (l-lysine). Mater Lett 62:147–150. doi:10.1016/j.matlet.2007.04.117

    Article  CAS  Google Scholar 

  • Chuang E-Y, Lin K-J, Su F-Y et al (2013) Noninvasive imaging oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats. J Control Release 172:513–522. doi:10.1016/j.jconrel.2013.05.006

    Article  CAS  Google Scholar 

  • Cox GN, Chlipala EA, Smith DJ et al (2014) Hematopoietic properties of granulocyte colony-stimulating factor/immunoglobulin (G-CSF/IgG-Fc) fusion proteins in normal and neutropenic rodents. PLoS ONE 9:e91990. doi:10.1371/journal.pone.0091990

    Article  Google Scholar 

  • Deming TJ (1997) Facile synthesis of block copolypeptides of defined architecture. Nature 390:386–389. doi:10.1038/37084

    Article  CAS  Google Scholar 

  • Deng C, Rong G, Tian H et al (2005) Synthesis and characterization of poly(ethylene glycol)-b-poly (l-lactide)-b-poly(l-glutamic acid) triblock copolymer. Polymer 46:653–659. doi:10.1016/j.polymer.2004.11.100

    Article  CAS  Google Scholar 

  • Deng J, Zhou Y, Xu B et al (2011) Dendronized chitosan derivative as a biocompatible gene delivery carrier. Biomacromolecules 12:642–649. doi:10.1021/bm101303f

    Article  CAS  Google Scholar 

  • Dimitrov I, Schlaad H (2003) Synthesis of nearly monodisperse polystyrene–polypeptide block copolymers via polymerisation of N-carboxyanhydrides. Chem Commun 2944–2945. doi:10.1039/B308990H

  • Eiamtrakarn S, Itoh Y, Kishimoto J et al (2002) Gastrointestinal mucoadhesive patch system (GI-MAPS) for oral administration of G-CSF, a model protein. Biomaterials 23:145–152. doi:10.1016/S0142-9612(01)00089-8

    Article  CAS  Google Scholar 

  • Fante C, Eldar-Boock A, Satchi-Fainaro R et al (2011) Synthesis and biological evaluation of a polyglutamic acid-dopamine conjugate: a new antiangiogenic agent. J Med Chem 54:5255–5259. doi:10.1021/jm200382r

    Article  CAS  Google Scholar 

  • Fox E, Widemann BC, Hawkins DS et al (2009) Randomized trial and pharmacokinetic study of pegfilgrastim versus filgrastim after dose-intensive chemotherapy in young adults and children with sarcomas. Clin Cancer Res 15:7361–7367. doi:10.1158/1078-0432.CCR-09-0761

    Article  CAS  Google Scholar 

  • Gamboa JM, Leong KW (2013) In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev 65:800–810. doi:10.1016/j.addr.2013.01.003

    Article  CAS  Google Scholar 

  • Giannotti MI, Esteban O, Oliva M et al (2011) pH-responsive polysaccharide-based polyelectrolyte complexes as nanocarriers for lysosomal delivery of therapeutic proteins. Biomacromolecules 12:2524–2533. doi:10.1021/bm2003384

    Article  CAS  Google Scholar 

  • Habberfield A, Jensen-Pippo K, Ralph L et al (1996) Vitamin B12-mediated uptake of erythropoietin and granulocyte colony stimulating factor in vitro and in vivo. Int J Pharm 145:1–8. doi:10.1016/S0378-5173(96)04690-X

    Article  CAS  Google Scholar 

  • Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides. Chem Rev 109:5528–5578. doi:10.1021/cr900049t

    Article  CAS  Google Scholar 

  • Han J, Ding J, Wang Z et al (2013) The synthesis, deprotection and properties of poly(γ-benzyl-l-glutamate). Sci China Chem 56:729–738. doi:10.1007/s11426-013-4839-3

    Article  CAS  Google Scholar 

  • Huang Y-C, Jan J-S (2014) Carboxylmethyl chitosan-graft-poly(γ-benzyl-l-glutamate) glycopeptides: synthesis and particle formation as encapsulants. Polymer 55:540–549. doi:10.1016/j.polymer.2013.12.037

    Article  CAS  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2012) A review of glycosylated carriers for drug delivery. Biomaterials 33:4166–4186. doi:10.1016/j.biomaterials.2012.02.033

    Article  CAS  Google Scholar 

  • Kaestle KL, Anwer MK, Audhya TK, Goldstein G (1991) Cleavage of esters using carbonates and bicarbonates of alkali metals: synthesis of thymopentin. Tetrahedron Lett 32:327–330. doi:10.1016/S0040-4039(00)92619-4

    Article  CAS  Google Scholar 

  • Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784. doi:10.1002/anie.200600693

    Article  CAS  Google Scholar 

  • Kukula H, Schlaad H, Tauer K (2002) Linear and star-shaped polystyrene-block-poly(sodium glutamate)s as emulsifiers in the heterophase polymerization of styrene. Macromolecules 35:2538–2544. doi:10.1021/ma011606q

    Article  CAS  Google Scholar 

  • Kurita K, Yoshida A, Koyama Y (1988) Studies on chitin. 13. New polysaccharide/polypeptide hybrid materials based on chitin and poly(.gamma.-methyl L-glutamate). Macromolecules 21:1579–1583. doi:10.1021/ma00184a007

    Article  CAS  Google Scholar 

  • Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541. doi:10.1021/bm070014y

    Article  CAS  Google Scholar 

  • Li P, Zhou C, Rayatpisheh S et al (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24:4130–4137. doi:10.1002/adma.201104186

    Article  CAS  Google Scholar 

  • Lin Y-H, Mi F-L, Chen C-T et al (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152. doi:10.1021/bm0607776

    Article  CAS  Google Scholar 

  • Liu Y-Z, Yao J-R, Cao H et al (2012) Chitosan-graft-poly(L-glutamic acid) hybrid material and its self-assembly. Chem Res Chin Univ 28:921–925

    CAS  Google Scholar 

  • Lu H, Cheng J (2008) N-Trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J Am Chem Soc 130:12562–12563. doi:10.1021/ja803304x

    Article  CAS  Google Scholar 

  • Mi F-L, Wu Y–Y, Lin Y-H et al (2008) Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjug Chem 19:1248–1255. doi:10.1021/bc800076n

    Article  CAS  Google Scholar 

  • Mizrahy S, Peer D (2012) Polysaccharides as building blocks for nanotherapeutics. Chem Soc Rev 41:2623–2640. doi:10.1039/C1CS15239D

    Article  CAS  Google Scholar 

  • Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Curr Pharm Des 10:1235–1244. doi:10.2174/1381612043452613

    Article  CAS  Google Scholar 

  • Nakamura R, Aoi K, Okada M (2006) Controlled synthesis of a chitosan-based graft copolymer having polysarcosine side chains using the NCA method with a carboxylic acid additive. Macromol Rapid Commun 27:1725–1732. doi:10.1002/marc.200600455

    Article  CAS  Google Scholar 

  • Nukui M, Hoes K, Van den Berg H, Feijen J (1991) Association of macromolecular prodrugs consisting of adriamycin bound to poly (L-glutamic acid). Makromol Chem 192:2925–2942

    Article  CAS  Google Scholar 

  • Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237. doi:10.1016/j.cocis.2010.12.005

    Article  CAS  Google Scholar 

  • Qian F, Cui F, Ding J et al (2006) Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules 7:2722–2727. doi:10.1021/bm060065f

    Article  CAS  Google Scholar 

  • Rao J, Luo Z, Ge Z et al (2007) “Schizophrenic” micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer. Biomacromolecules 8:3871–3878. doi:10.1021/bm700830b

    Article  CAS  Google Scholar 

  • Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084. doi:10.1021/cr030441b

  • Sarmento B, Ribeiro A, Veiga F et al (2007) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8:3054–3060. doi:10.1021/bm0703923

    Article  CAS  Google Scholar 

  • Sashiwa H, Shigemasa Y, Roy R (2000) Dissolution of chitosan in dimethyl sulfoxide by salt formation. Chem Lett 29:596–597

    Article  Google Scholar 

  • Strand SP, Issa MM, Christensen BE et al (2008) Tailoring of chitosans for gene delivery: novel self-branched glycosylated chitosan oligomers with improved functional properties. Biomacromolecules 9:3268–3276. doi:10.1021/bm800832u

    Article  CAS  Google Scholar 

  • Su F-Y, Chuang E-Y, Lin P-Y et al (2014) Treatment of chemotherapy-induced neutropenia in a rat model by using multiple daily doses of oral administration of G-CSF-containing nanoparticles. Biomaterials 35:3641–3649. doi:10.1016/j.biomaterials.2014.01.020

    Article  CAS  Google Scholar 

  • Subramanian G, Hjelm RP, Deming TJ et al (2000) Structure of complexes of cationic lipids and poly(glutamic acid) polypeptides: a pinched lamellar phase. J Am Chem Soc 122:26–34. doi:10.1021/ja991905j

    Article  CAS  Google Scholar 

  • Sung H-W, Sonaje K, Liao Z-X et al (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629. doi:10.1021/ar200234q

    Article  CAS  Google Scholar 

  • Tang Y, Liu L, Wu J, Duan J (2013) Synthesis and self-assembly of thermo/pH-responsive double hydrophilic brush–coil copolymer with poly(l-glutamic acid) side chains. J Colloid Interface Sci 397:24–31. doi:10.1016/j.jcis.2013.01.018

    Article  CAS  Google Scholar 

  • Verheul RJ, Amidi M, van der Wal S et al (2008) Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials 29:3642–3649. doi:10.1016/j.biomaterials.2008.05.026

    Article  CAS  Google Scholar 

  • Wang J, Lu H, Kamat R et al (2011) Supramolecular polymerization from polypeptide-grafted comb polymers. J Am Chem Soc 133:12906–12909. doi:10.1021/ja202268t

    Article  CAS  Google Scholar 

  • Wang XT, Wang J, Sun HL et al (2013) Preparation and properties of poly(benzyl glutamate)–poloxamer–poly(benzyl glutamate) and poly(glutamic acid)–poloxamer–poly(glutamic acid) triblock polymers. J Appl Polym Sci 129:1187–1192. doi:10.1002/app.38601

    Article  CAS  Google Scholar 

  • Xiang Y, Si J, Zhang Q et al (2009) Homogeneous graft copolymerization and characterization of novel artificial glycoprotein: chitosan-poly(L-tryptophan) copolymers with secondary structural side chains. J Polym Sci Part Polym Chem 47:925–934. doi:10.1002/pola.23211

    Article  CAS  Google Scholar 

  • Young DC, Cheng Q-L, Hou J et al (1997) Characterization of the receptor binding determinants of granulocyte colony stimulating factor. Protein Sci 6:1228–1236. doi:10.1002/pro.5560060611

    Article  CAS  Google Scholar 

  • Yu H, Chen X, Lu T et al (2007) Poly(l-lysine)-graft-chitosan copolymers: synthesis, characterization, and gene transfection effect. Biomacromolecules 8:1425–1435. doi:10.1021/bm060910u

    Article  CAS  Google Scholar 

  • Yu H, Deng C, Tian H et al (2011) Chemo-physical and biological evaluation of poly(L-lysine)-grafted chitosan copolymers used for highly efficient gene delivery. Macromol Biosci 11:352–361. doi:10.1002/mabi.201000283

    Article  CAS  Google Scholar 

  • Zhang G, Zhang R, Wen X et al (2008) Micelles based on biodegradable poly(l-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI–visible delivery system. Biomacromolecules 9:36–42. doi:10.1021/bm700713p

    Article  CAS  Google Scholar 

  • Zhuang W, Liao L, Chen H et al (2009) Water soluble star-block copolypeptides: towards biodegradable nanocarriers for versatile and simultaneous encapsulation. Macromol Rapid Commun 30:920–924. doi:10.1002/marc.200800807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Higher Education, Science and Technology of the Republic of Slovenia through the Slovenian Research Agency (Program P2-0145 and project L2-4166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ema Žagar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perdih, P., Pahovnik, D., Cegnar, M. et al. Synthesis of chitosan-graft-poly(sodium-l-glutamate) for preparation of protein nanoparticles. Cellulose 21, 3469–3485 (2014). https://doi.org/10.1007/s10570-014-0362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0362-8

Keywords

Navigation