Skip to main content
Log in

In situ phosphorus K-edge X-ray absorption spectroscopy studies of calcium–phosphate formation and transformation on the surface of bacterial cellulose nanofibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, for the first time, in situ formation and transformation process of embryo calcium phosphate (Ca–P) minerals on three-dimensional bacterial cellulose nanofibers was investigated. Combined with XRD, X-ray absorption near-edge structure results revealed that the embryo precursor was amorphous calcium phosphate which was subsequently converted to β-tricalcium phosphate, octacalcium phosphate, and finally to the more thermodynamically stable form of hydroxyapatite. The methodology reported herein may be extended to the studies of Ca–P and other minerals on various substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbona F, Baronnet A (1996) A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium. J Cryst Growth 165(1):98–105

    Article  CAS  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  Google Scholar 

  • Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):320–330

    Article  Google Scholar 

  • Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang MQ (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    Article  CAS  Google Scholar 

  • Cao B, Mao C (2007) Oriented nucleation of hydroxylapatite crystals on spider dragline silks. Langmuir 23(21):10701–10705

    Article  CAS  Google Scholar 

  • Chusuei CC, Goodman DW, Van Stipdonk MJ, Justes DR, Schweikert EA (1999) Calcium phosphate phase identification using XPS and time-of-flight cluster SIMS. Anal Chem 71(1):149–153

    Article  CAS  Google Scholar 

  • Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6(9):3362–3378

    Article  CAS  Google Scholar 

  • De Yoreo JJ, Chung S, Friddle RW (2013) In situ atomic force microscopy as a tool for investigating interactions and assembly dynamics in biomolecular and biomineral systems. Adv Funct Mater 23:2525–2538

    Article  Google Scholar 

  • Demirldran H, Hu Y, Zuin L, Appathurai N, Aswath PB (2011) XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (R) 45S5 co-sintered bioceramics. Mater Sci Eng C 31(2):134–143

    Article  Google Scholar 

  • Dimas LS, Bratzel GH, Eylon I, Buehler MJ (2013) Tough composites inspired by mineralized natural materials: computation, 3d printing, and testing. Adv Funct Mater 23(36):4629–4638

    Article  CAS  Google Scholar 

  • Dorozhkin SV, Epple M (2002) Biological and medical significance of calcium phosphates. Angew Chem Int Ed 41(17):3130–3146

    Article  CAS  Google Scholar 

  • Du C, Cui F, Zhang W, Feng Q, Zhu X, De Groot K (2000) Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 50(4):518–527

    Article  CAS  Google Scholar 

  • Eanes E, Gillessen I, Posner A (1965) Intermediate states in the precipitation of hydroxyapatite. Nature 208:365–367

    Article  CAS  Google Scholar 

  • Eveborn D, Gustafsson JP, Hesterberg D, Hillier S (2009) XANES speciation of P in environmental samples: an assessment of filter media for on-site wastewater treatment. Environ Sci Technol 43(17):6515–6521

    Article  CAS  Google Scholar 

  • Gong YUT, Killian CE, Olson IC, Appathurai NP, Amasino AL, Martin MC, Holt LJ, Wilt FH, Gilbert PUPA (2012) Phase transitions in biogenic amorphous calcium carbonate. Proc Natl Acad Sci USA 109(16):6088–6093

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Carmen Bañó M (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5(5):1605–1615

    Article  CAS  Google Scholar 

  • Granja P, Ribeiro C, De Jéso B, Baquey C, Barbosa M (2001) Mineralization of regenerated cellulose hydrogels. J Mater Sci Mater Med 12(9):785–791

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  CAS  Google Scholar 

  • Hayashi S, Ohkawa K, Yamamoto H, Yamaguchi M, Kimoto S, Kurata S, Shinji H (2009) Calcium phosphate crystallization on electrospun cellulose non-woven fabrics containing synthetic phosphorylated polypeptides. Macromol Mater Eng 294(5):315–322

    Article  CAS  Google Scholar 

  • Higashi K, Kondo T (2012) Nematic ordered cellulose templates mediating order-patterned deposition accompanied with synthesis of calcium phosphates. Cellulose 19(1):81–90

    Article  CAS  Google Scholar 

  • Hofmann I, Müller L, Greil P, Müller FA (2006) Calcium phosphate nucleation on cellulose fabrics. Surf Coat Technol 201(6):2392–2398

    Article  CAS  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27(26):4661–4670

    Article  CAS  Google Scholar 

  • Kibalczyc W, Christoffersen J, Christoffersen M, Zielenkiewicz A, Zielenkiewicz W (1990) The effect of magnesium ions on the precipitation of calcium phosphates. J Cryst Growth 106(2):355–366

    Article  CAS  Google Scholar 

  • Kim S, Ryu H-S, Shin H, Jung HS, Hong KS (2005) In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions. Mater Chem Phys 91(2):500–506

    Article  CAS  Google Scholar 

  • Li K, Wang J, Liu X, Xiong X, Liu H (2012) Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Carbohydr Polym 90(4):1573–1581

    Article  CAS  Google Scholar 

  • Liou SC, Chen SY, Lee HY, Bow JS (2004) Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials 25(2):189–196

    Article  CAS  Google Scholar 

  • Nge TT, Sugiyama J (2007) Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. J Biomed Mater Res Part A 81A(1):124–134

    Article  CAS  Google Scholar 

  • Onuma K, Ito A (1998) Cluster growth model for hydroxyapatite. Chem Mater 10(11):3346–3351

    Article  CAS  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert PUPA (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci USA 105(45):17362–17366

    Article  CAS  Google Scholar 

  • Rhee SH, Tanaka J (2000) Hydroxyapatite formation on cellulose cloth induced by citric acid. J Mater Sci Mater Med 11(7):449–452

    Article  CAS  Google Scholar 

  • Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J (2005) Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol 39(19):7485–7491

    Article  CAS  Google Scholar 

  • Sato S, Neves EG, Solomon D, Liang BQ, Lehmann J (2009) Biogenic calcium phosphate transformation in soils over millennial time scales. J Soils Sediments 9(3):194–205

    Article  CAS  Google Scholar 

  • Stupp SI, Braun PV (1997) Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science 277(5330):1242–1248

    Article  CAS  Google Scholar 

  • Sugiura Y, Onuma K, Kimura Y, Miura H, Tsukamoto K (2011) Morphological evolution of precipitates during transformation of amorphous calcium phosphate into octacalcium phosphate in relation to role of intermediate phase. J Cryst Growth 332(1):58–67

    Article  CAS  Google Scholar 

  • Tolmachev DA, Lukasheva NV (2012) Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates. Langmuir 28(37):13473–13484

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27(4):855–864

    Article  CAS  Google Scholar 

  • Wan YZ, Gao C, Luo HL, He F, Liang H, Li XL, Wang YL (2009) Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(11):6494–6500

    Article  CAS  Google Scholar 

  • Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, DiMasi E, Kisailus D (2012) The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336(6086):1275–1280

    Article  CAS  Google Scholar 

  • Xin RL, Leng Y, Wang N (2006) In situ TEM examinations of octacalcium phosphate to hydroxyapatite transformation. J Cryst Growth 289(1):339–344

    Article  CAS  Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51172158) and the Science and Technology Support Program of Tianjin (Grant No. 11ZCKFSY01700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizao Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Xiong, G. & Wan, Y. In situ phosphorus K-edge X-ray absorption spectroscopy studies of calcium–phosphate formation and transformation on the surface of bacterial cellulose nanofibers. Cellulose 21, 3303–3309 (2014). https://doi.org/10.1007/s10570-014-0359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0359-3

Keywords

Navigation