Skip to main content
Log in

Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The dissociation behavior of the crystalline cellulose polymorphs Iβ, II, IIII, and IVI (Cell Iβ, etc.) at 503 K and 100 bar was studied by molecular dynamics simulation, and the mechanism of the experimental liquefaction during treatment with hot-compressed water was elucidated. The results showed that the mini-crystals of Cell Iβ and Cell IVI exhibited similar resistance to dissociation, which implies the occurrence of crystal transformation from Cell IVI to Cell I. On the other hand, the mini-crystal of Cell II gradually dissociated into the water environment with the progress of time in the simulation. The water molecules gradually penetrated the Cell II crystal, especially along the (1\(\overline{1}\)0) crystal plane. In contrast, the dissolution behavior differed for the surface and the core areas of the mini-crystal of Cell IIII. The cellulose chains on the surface were dissociated into the water environment, whereas the ordered structure of the chains in the core region was maintained for the entire simulation period. The detailed investigation showed that the core part of Cell IIII was transformed into Cell I at an early stage of the simulation: Cell I is resistant to dissociation of the structure even in the hot-compressed water environment. It can be confirmed that the stability of these four crystals under high temperature and pressure conditions follows the order: Cell II < IIII < IVI ≈ Iβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah R, Ueda K, Saka S (2013) Decomposition behaviors of various crystalline celluloses as treated by semi-flow hot-compressed water. Cellulose 20:2321–2333

    Article  CAS  Google Scholar 

  • Adschiri T, Hirose S, Malaluan R, Arai K (1993) Noncatalytic conversion of cellulose in supercritical and subcritical water. J Chem Eng Jpn 26:676–680

    Article  CAS  Google Scholar 

  • Agarwal V, Huber GW, Curtis Conner W Jr, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys 135:134506-1–134506-13

    Article  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Bellesia G, Asztalos A, Shen T, Langan P, Redondo A, Ganakaran S (2010) In silico studies of crystalline cellulose and its degradation by enzymes. Acta Cryst D66:1184–1188

    Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bergenstrahle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an W log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202

    Article  CAS  Google Scholar 

  • Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  • Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  CAS  Google Scholar 

  • Guvench O, Hatcher E, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM: Additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  CAS  Google Scholar 

  • Hayashi J, Masuda S, Watanabe S (1974) Plane lattice structure in amorphous region of cellulose fibers. J Chem Soc Jap Chem Ind Chem (Nippon Kagaku Kaishi) 5:948–954

    Google Scholar 

  • Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) Confirmation of existence of cellulose IIII, IIIII, IVI and IVII by X-ray method. Polym Lett Ed 13:23–27

    Article  CAS  Google Scholar 

  • Hermans PH (1949) Degree of lateral order in various rayons as deduced from X-ray measurements. J Polym Sci 4:145–151

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Hockney RW (1970) The potential calculation and some applications. Methods Comput Phys 9:135–211

    Google Scholar 

  • Hoover WD (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20:2946–2949

    Article  CAS  Google Scholar 

  • Hosoya T, Nakao Y, Sato H, Kawamoto H, Sakaki S (2009) Thermal degradation of methyl β-d-glucoside. A theoretical study of plausible reaction mechanisms. J Org Chem 74:6891–6894

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Ito T, Hirata Y, Sawa F, Shirakawa N (2002) Hydrogen bond and crystal deformation of cellulose in sub/super-critical water. Jpn J Appl Phys 41:5809–5814

    Article  CAS  Google Scholar 

  • Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J Comput Chem 19(10):1179–1186

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kamio E, Takahashi S, Noda H, Fukuhara C, Okamura T (2006) Liquefaction of cellulose in hot-compressed water under variable temperatures. Ind Eng Chem Res 45:4944–4953

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29:5695–5699

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Lin C-L, Wood RH (1996) Prediction of the free energy of dilute aqueous methane, ethane, and propane at temperatures from 600 to 1200 °C and densities from 0 to 1 g cm−3 using molecular dynamics simulations. J Phys Chem 100(40):16399–16409

    Article  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Lu X, Yamauchi K, Phaiboonsilpa N, Saka S (2009) Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water. J Wood Sci 55:367–375

    Article  CAS  Google Scholar 

  • Matthews JF, Bergenstrahle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166

    Article  CAS  Google Scholar 

  • Matthews JF, Himmel ME, Crowley MF (2012) Conversion of cellulose Iα to Iβ via a high temperature intermediate (I-HT) and other cellulose phase transformations. Cellulose 19:297–306

    Article  CAS  Google Scholar 

  • Minowa T, Zhen F, Ogi T, Várhegyi G (1997) Liquefaction of cellulose in hot-compressed water using sodium carbonate: products distribution at different reaction temperatures. J Chem Eng Jpn 30:186–190

    Article  CAS  Google Scholar 

  • Minowa T, Zhen F, Ogi T, Várhegyi G (1998) Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J Chem Eng Jpn 31:131–134

    Article  CAS  Google Scholar 

  • Miyamoto H, Umemura M, Aoyagi T, Yamane C, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nose S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Phaiboonsilpa N, Yamauchi K, Lu X, Saka S (2010) Two-step hydrolysis of Japanese Cedar as treated by semi-flow hot-compressed water. J Wood Sci 56:331–338

    Article  CAS  Google Scholar 

  • Phaiboonsilpa N, Tamunaidu P, Saka S (2011) Two-step hydrolysis of nipa (Nypa fruticans) frond as treated by semi-flow hot-compressed water. Holzforschung 65:659–666

    CAS  Google Scholar 

  • Queyroy S, Muller-Plathe F, Brown D (2004) Molecular dynamics simulations of cellulose oligomers: conformational analysis. Macromol Theory Simul 13:427–440

    Article  CAS  Google Scholar 

  • Roche E, Chanzy H (1981) Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J Biol Macromol 3:201–206

    Article  CAS  Google Scholar 

  • Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids 13:261–268

    Article  CAS  Google Scholar 

  • Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794

    Article  CAS  Google Scholar 

  • Tanaka F, Fukui N (2004) The behavior of cellulose molecules in aqueous environments. Cellulose 11:33–38

    Article  CAS  Google Scholar 

  • Ueda K, Komai T, Yu I, Nakayama H (2002) Molecular dynamics study on the density fluctuation of supercritical water. J Comput Chem Jpn 1(3):83–88

    Article  CAS  Google Scholar 

  • Uto T, Hosoya T, Hayashi S, Yui T (2013) Partial crystalline transformation of solvated cellulose IIII crystals, reproduced by theoretical calculations. Cellulose 20:605–612

    Article  CAS  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Wada M (2001) In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules 34:3271–3275

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F, Odani H (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22:4130–4132

    Article  CAS  Google Scholar 

  • Yamane C, Aoyagi T, Ago M, Sato K, Okajima K, Takahashi T (2006) Two different surface properties of regenerated cellulose due to structural anisotropy. Polym J 38:819–826

    Article  CAS  Google Scholar 

  • Yatsu LY, Calamari TA Jr, Benerito RR (1986) Conversion of cellulose I to stable cellulose III. Text Res J 56:419–424

    Article  CAS  Google Scholar 

  • Yui T (2012) Crystal structure conversions observed in cellulose IIII crystal models. Cell Commun (Japanese) 19:7–11

    CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16:151–165

    Article  CAS  Google Scholar 

  • Zhang Q, Bulone V, Agren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. M. thanks the Japan Society for the Promotion of Science for providing a JSPS Research Fellowship for Young Scientists. The authors wish to thank the Research Center for Computational Science, Okazaki, Japan for the use of their computer. This work was supported by a Grant-in-Aid for Scientific Research (No. 26450226) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, H., Abdullah, R., Tokimura, H. et al. Molecular dynamics simulation of dissociation behavior of various crystalline celluloses treated with hot-compressed water. Cellulose 21, 3203–3215 (2014). https://doi.org/10.1007/s10570-014-0343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0343-y

Keywords

Navigation