Skip to main content
Log in

Enhancing enzymatic hydrolysis of crystalline cellulose and lignocellulose by adding long-chain fatty alcohols

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The effects of long-chain fatty alcohols (LFAs) on the enzymatic hydrolysis of crystalline cellulose by two commercial Trichoderma reesei cellulase cocktails (CTec2 and Celluclast 1.5L) were studied. It was found that n-butanol inhibited the enzymatic hydrolysis, but n-octanol, n-decanol and n-dodecanol had strong enhancement on enzymatic hydrolysis of crystalline cellulose in the buffer pH range from 4.0 to 6.0. LFAs can increase the hydrolysis efficiency of crystalline cellulose from 37 to 57 % at Celluclast 1.5L loading of ten filter paper units (FPU)/g glucan. LFAs have similar enhancement on the enzymatic hydrolysis of crystalline cellulose mixed with lignin or xylan. The enhancement of LFAs increased with the decrease of the crystallinity index. LFAs not only enhanced the high-solid enzymatic hydrolysis of lignocellulose, but also improved the rheological properties of high-solid lignocellulosic slurries by decreasing the yield stress and complex viscosity. Meanwhile, LFAs can improve the enzymatic hydrolysis of cellobiose to glucose, especially at low cellulase loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LFAs:

Long-chain fatty alcohols

CTec2:

Commercial Trichoderma reesei cellulase cocktail

FPU:

Filter paper units

C4:

n-Butanol

C8:

n-Octanol

C10:

n-Decanol

C12:

n-Dodecanol

SED:

Substrate enzymatic digestibility

References

  • Alkasrawi M, Eriksson T, Börjesson J, Wingren A, Galbe M, Tjerneld F, Guido Z (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb Technol 33(1):71–78. doi:10.1016/S0141-0229(03)00087-5

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4–14. doi:10.1186/1754-6834-3-4

    Article  Google Scholar 

  • Fazilet VS (1998) Foaming: consequences, prevention and destruction. Biotechnol Adv 16(5–6):913–948. doi:10.1016/S0734-9750(98)00010-X

    Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582. doi:10.1111/j.1742-4658.2010.07585.x

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.113701

    Article  CAS  Google Scholar 

  • Joshi KS, Jeelani SAK, Blickenstorfer C, Naegeli I, Windhab EJ (2005) Influence of fatty alcohol antifoam suspensions on foam stability. Colloids Surf A Physicochem Eng Asp 263(1–3):239–249. doi:10.1016/j.colsurfa.2005.01.004

    Article  CAS  Google Scholar 

  • Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, SeijiShibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y (2008) Isoflavone aglycones production from isoflavone glycosidesby display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl Microbiol Biotechnol 79:51–60. doi:10.1007/s00253-008-1393-6

    Article  CAS  Google Scholar 

  • Knutsen JS, Liberatore MW (2010) Rheology modification and enzyme kinetics of high-solids cellulosic slurries: an economic analysis. Energy Fuels 24(12):6506–6512. doi:10.1021/ef100746q

    Article  CAS  Google Scholar 

  • Lou HM, Zhu JY, Lan TQ, Lai HR, Qiu XQ (2013) pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6(5):919–927. doi:10.1002/cssc.201200859

    Article  CAS  Google Scholar 

  • Lou HM, Zhou HF, Li XL, Wang MX, Zhu JY, Qiu XQ (2014) Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose. Cellulose 21:1351–1359. doi:10.1007/s10570-014-0237-z

    Article  CAS  Google Scholar 

  • Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenergy 56:526–544. doi:10.1016/j.biombioe.2013.05.031

    Article  CAS  Google Scholar 

  • Niemi P, Faulds CB, Sibakov J, Holopainen U, Poutanen K, Buchert J (2012) Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in brewer’s spent grain. Bioresour Technol 116:155–160. doi:10.1016/j.biortech.2012.04.043

    Article  CAS  Google Scholar 

  • Ouyang J, Dong ZW, Song XY, Lee X, Chen M, Yong Q (2010) Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresour Technol 101(17):6685–6691. doi:10.1016/j.biortech.2010.03.085

    Article  CAS  Google Scholar 

  • Peng HD, Li HQ, Luo H, Xu J (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour Technol 130:81–87. doi:10.1016/j.biortech.2012.10.167

    Article  CAS  Google Scholar 

  • Qiu ZH, Aita GM, Walker MS (2013) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256. doi:10.1016/j.biortech.2012.04.070

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytic Procedure LAP-002, National Renewable Energy Laboratory

  • Zhu JY, Zhuang XS (2012) Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energ Combust 38(4):583–589. doi:10.1016/j.pecs.2012.03.007

    Article  CAS  Google Scholar 

  • Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418. doi:10.1016/j.biortech.2008.10.057

    Article  CAS  Google Scholar 

  • Zhu JY, Sabo R, Luo XL (2010) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344. doi:10.1039/C1GC15103G

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports of the National Natural Science Foundation of China (21376100, 21336002), International S&T Cooperation Program of China (2013DFA41670), the National Basic Research Program of China 973 (2012CB215302) and the Fundamental Research Funds for the Central Universities (2014ZG0022). We acknowledge Liu Hao (State Key Laboratory of Pulp and Paper Engineering, SCUT) for giving the CTec2 sample and Lan Tianqing for assistance in analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, H., Lai, H., Wu, S. et al. Enhancing enzymatic hydrolysis of crystalline cellulose and lignocellulose by adding long-chain fatty alcohols. Cellulose 21, 3361–3369 (2014). https://doi.org/10.1007/s10570-014-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0331-2

Keywords

Navigation