Advertisement

Cellulose

, Volume 21, Issue 4, pp 2727–2741 | Cite as

Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams

  • Hao-Yang Mi
  • Xin Jing
  • Jun Peng
  • Max R. Salick
  • Xiang-Fang Peng
  • Lih-Sheng Turng
Original Paper

Abstract

Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.

Keywords

Poly(ε-caprolactone) (PCL) Cellulose nanocrystals (CNC) Foaming Mechanical properties Thermal properties Crystallization Biocompatibility 

Notes

Acknowledgments

The authors would like to acknowledge the support of the Wisconsin Institute for Discovery (WID), the China Scholarship Council (CSC), the financial support of the National Nature Science Foundation of China (No. 51073061, No. 21174044), the Guangdong Nature Science Foundation (No. S2013020013855, No. 9151064101000066), and National Basic Research Development Program 973 (No. 2012CB025902) in China. Great appreciation is given to Rick Reiner of the USDA Forest Service Forest Products Laboratory for producing the cellulose nanomaterials used in this study.

References

  1. Agarwal S, Speyerer C (2010) Degradable blends of semi-crystalline and amorphous branched poly(caprolactone): effect of microstructure on blend properties. Polymer 51:1024–1032CrossRefGoogle Scholar
  2. Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRefGoogle Scholar
  3. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRefGoogle Scholar
  4. Bonini C, Heux L, Cavaille JY, Lindner P, Dewhurst C, Terech P (2002) Rodlike cellulose whiskers coated with surfactant: a small-angle neutron scattering characterization. Langmuir 18:3311–3314CrossRefGoogle Scholar
  5. Cao XD, Vicens MAR, Magalhaes WLE, Loboa EG, Lucia LA (2009) Cellulose nanocrystals as fillers for electrospun PCL nanocomposite scaffolds. Abstr Pap Am Chem S 237Google Scholar
  6. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  7. Ding J, Ma WH, Song FJ, Zhong Q (2013) Effect of nano-Calcium Carbonate on microcellular foaming of polypropylene. J Mater Sci 48:2504–2511CrossRefGoogle Scholar
  8. Dolomanova V, Kumar V, Pyrz R, Madaleno LAO, Jensen LR, Rauhe JCM (2013) Foaming of microcellular PP-MWCNT nanocomposite in a sub-critical CO2 process. Cell Polym 32:1–19Google Scholar
  9. Donoghue PS, Lamond R, Boomkamp SD, Sun T, Gadegaard N, Riehle MO, Barnett SC (2013) The development of a epsilon-polycaprolactone scaffold for central nervous system repair. Tissue Eng Pt A 19:497–507CrossRefGoogle Scholar
  10. Espert A, Vilaplana F, Karlsson S (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos Part A Appl S 35:1267–1276CrossRefGoogle Scholar
  11. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Pt A 15:1091–1098CrossRefGoogle Scholar
  12. Filpponen I, Lucia LA, Argyropoulos DS (2008) CELL 269-cellulose nanocrystals as scaffolds for nanodevices. Abstr Pap Am Chem S 235Google Scholar
  13. Gea S, Reynolds CT, Roohpur N, Soykeabkaew N, Wirjosentono B, Bilotti E, Peijs T (2010) Biodegradable composites based on poly(epsilon-caprolactone) and bacterial cellulose as a reinforcing agent. J Biobased Mater Bio 4:384–390CrossRefGoogle Scholar
  14. Guo QP, Groeninckx G (2001) Crystallization kinetics of poly (epsilon-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly (epsilon-caprolactone). Polymer 42:8647–8655CrossRefGoogle Scholar
  15. Honma T, Senda T, Inoue Y (2003) Thermal properties and crystallization behaviour of blends of poly(epsilon-caprolactone) with chitin and chitosan. Polym Int 52:1839–1846CrossRefGoogle Scholar
  16. Ishihara K, Ishikawa E, Iwasaki Y, Nakabayashi N (1999) Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomat Sci-Polym E 10:1047–1061CrossRefGoogle Scholar
  17. Juntaro J, Ummartyotin S, Sain M, Manuspiya H (2012) Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties. Carbohyd Polym 87:2464–2469CrossRefGoogle Scholar
  18. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393CrossRefGoogle Scholar
  19. Kramschuster A, Turng LS (2010) An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. J Biomed Mater Res B 92B:366–376Google Scholar
  20. Lee JWS, Park CB (2006) Use of nitrogen as a blowing agent for the production of fine-celled high-density polyethylene foams. Macromol Mater Eng 291:1233–1244CrossRefGoogle Scholar
  21. Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRefGoogle Scholar
  22. Liu HX, Huang YY, Yuan L, He PS, Cai ZH, Shen YL, Xu YM, Yu Y, Xiong HG (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRefGoogle Scholar
  23. Liu S, Jeannes S, Chen BQ (2011) Nanofibrous bacterial cellulose/chitosan scaffolds: preparation, structure and mechanical properties. J Biomater Tiss Eng 1:60–67CrossRefGoogle Scholar
  24. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRefGoogle Scholar
  25. Ljungberg N, Cavaille JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRefGoogle Scholar
  26. Lonnberg H, Fogelstrom L, Berglund MASASL, Malmstrom E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(epsilon-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997CrossRefGoogle Scholar
  27. Marcovich NE, Auad ML, Bellesi NE, Nutt SR, Aranguren MI (2006) Cellulose micro/nanocrystals reinforced polyurethane. J Mater Res 21:870–881CrossRefGoogle Scholar
  28. Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617CrossRefGoogle Scholar
  29. Matzinos P, Tserki V, Gianikouris C, Pavlidou E, Panayiotou C (2002) Processing and characterization of LDPE/starch/PCL blends. Eur Polym J 38:1713–1720CrossRefGoogle Scholar
  30. Mi HY, Salick MR, Jing X, Jacques BR, Crone WC, Peng XF, Turng LS (2013) Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding. Mat Sci Eng C Mater 33:4767–4776CrossRefGoogle Scholar
  31. Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35:2190–2199CrossRefGoogle Scholar
  32. Naguib HE, Park CB, Lee PC, Xu DL (2006) A study on the foaming behaviors of PP resins with talc as nucleating agent. J Polym Eng 26:565–587CrossRefGoogle Scholar
  33. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784CrossRefGoogle Scholar
  34. Qua EH, Hornsby PR (2011) Preparation and characterisation of nanocellulose reinforced polyamide-6. Plast, Rubber Compos 40:300–306CrossRefGoogle Scholar
  35. Reinsch VE, Kelley SS (1997) Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64:1785–1796CrossRefGoogle Scholar
  36. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  37. Sain S, Ray D, Mukhopadhyay A, Sengupta S, Kar T, Ennis CJ, Rahman PKSM (2012) Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J Appl Polym Sci 126:E127–E134CrossRefGoogle Scholar
  38. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  39. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  40. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  41. Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie MP (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(epsilon-caprolactone). Eur Polym J 47:2216–2227CrossRefGoogle Scholar
  42. Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223CrossRefGoogle Scholar
  43. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  44. Xiang CH, Taylor AG, Hinestroza JP, Frey MW (2013) Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127:79–86CrossRefGoogle Scholar
  45. Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. Acs Appl Mater Inter 5:3199–3207CrossRefGoogle Scholar
  46. Yoshioka M, Takabe K, Sugiyama J, Nishio Y (2006) Newly developed nanocomposites from cellulose acetate/layered silicate/poly(epsilon-caprolactone): synthesis and morphological characterization. J Wood Sci 52:121–127CrossRefGoogle Scholar
  47. Zhao HB, Cui ZX, Sun XF, Turng LS, Peng XF (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52:2569–2581CrossRefGoogle Scholar
  48. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Engineering Research Center of Novel Equipment for Polymer ProcessingSouth China University of TechnologyGuangzhouChina
  2. 2.Wisconsin Institute for DiscoveryUniversity of Wisconsin–MadisonMadisonUSA
  3. 3.Department of Mechanical EngineeringUniversity of Wisconsin–MadisonMadisonUSA
  4. 4.Department of Engineering PhysicsUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations