Skip to main content
Log in

In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to broaden applications of viscose fiber, graft copolymerization of acrylic acid was conducted on its surface followed by in situ loading of Ag nanoparticles (Ag-NPs). The loading amount of Ag-NPs was affected by the concentrations of Ag+ and trisodium citrate, and their optimum concentrations were found to be 0.014 and 0.030 g/ml. The Ag-NP-loaded fibers presented a prolonged Ag release behavior in aqueous solution, of which the cumulative release was less than 5 % within 48 h. In addition, the viscose fibers showed good antimicrobial activity against S. aureus, and their consecutive antimicrobial activity was kept at more than 90 % after several washing cycles. Modified viscose fibers, therefore, offer a great opportunity for use as antimicrobial fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Aziz MS, Eid BM, Ibrahim NA (2014) Biosynthesized silver nanoparticles for antibacterial treatment of cellulosic fabrics using O2-plasma. AATCC J Res 1(1):6–12

    Article  Google Scholar 

  • Becker RO, Spadaro JA (1978) Treatment of orthopaedic infections with electrically generated silver ions. A preliminary report. J Bone Joint Surg 60(7):871–881

    CAS  Google Scholar 

  • Carlson C, Hussain S, Schrand A, Braydich-Stolle LK, Hess K, Jones R, Schlager J (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  Google Scholar 

  • Chen C-Y, Chiang C-L (2008) Preparation of cotton fibers with antibacterial silver nanoparticles. Mater Lett 62(21–22):3607–3609

    Article  CAS  Google Scholar 

  • Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47(9):4140–4146

    Article  CAS  Google Scholar 

  • Dong X, Ji X, Wu H, Zhao L, Li J, Yang W (2009) Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C 113(16):6573–6576

    Article  CAS  Google Scholar 

  • Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A 289(1–3):105–109

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • Erdumlu N, Ozipek B (2008) Investigation of regenerated bamboo fibre and yarn characteristics. Fibres Text East Eur 16(4):43–47

    CAS  Google Scholar 

  • Gürdağ G, Yaşar M, Gürkaynak MA (1997) Graft copolymerization of acrylic acid on cellulose: reaction kinetics of copolymerization. J Appl Polym Sci 66(5):929–934

    Article  Google Scholar 

  • Ibrahim NA, Eid BM, Elmaaty TMA, El-Aziz EA (2013) A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr Polym 94(1):612–618

    Article  CAS  Google Scholar 

  • Ip M, Lui SL, Poon VKM, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(1):59–63

    Article  CAS  Google Scholar 

  • Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129(45):13939–13948

    Article  CAS  Google Scholar 

  • Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  Google Scholar 

  • Park Y, Zhao S-i (2004) Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J Agric Food Chem 52(7):1933–1939

    Article  CAS  Google Scholar 

  • Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134

    Article  CAS  Google Scholar 

  • Sales JAA, Airoldi C (2003) Epoxide silylant agent ethylenediamine reaction product anchored on silica gel—thermodynamics of cation–nitrogen interaction at solid/liquid interface. J Non-Cryst Solids 330(1–3):142–149

    Article  CAS  Google Scholar 

  • Sarkar A, Appidi S (2009) Single bath process for imparting antimicrobial activity and ultraviolet protective property to bamboo viscose fabric. Cellulose 16(5):923–928

    Article  CAS  Google Scholar 

  • Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26(15):4419–4426

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  CAS  Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69(2):164–168

    Article  CAS  Google Scholar 

  • Wang X, Li Q, Di Y, Xing G (2012) Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fibers Polym 13(6):718–723

    Article  CAS  Google Scholar 

  • Xu Y, Lu Z, Tang R (2007) Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber. J Therm Anal Calorim 89(1):197–201

    Article  CAS  Google Scholar 

  • Yang Z, Qian H, Chen H, Anker JN (2010) One-pot hydrothermal synthesis of silver nanowires via citrate reduction. J Colloid Interface Sci 352(2):285–291

    Article  CAS  Google Scholar 

  • Zahran M (2006) Grafting of methacrylic acid and other vinyl monomers onto cotton fabric using Ce(IV) ion-cellulose thiocarbonate redox system. J Polym Res 13(1):65–71

    Article  CAS  Google Scholar 

  • Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16(16):6396–6399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Research Fund for the Doctoral Program of Higher Education of China (20130181120067), the National Science Foundation of China (51273123, 51121001), the Excellent Youth Foundation of Sichuan (2011JQ0007), and the Program for Changjiang Scholars and Innovative Research Team in University (RT 1026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Song or Xiu-Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Song, F., Wang, XL. et al. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles. Cellulose 21, 3097–3105 (2014). https://doi.org/10.1007/s10570-014-0324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0324-1

Keywords

Navigation