Skip to main content
Log in

All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bio-based continuous fibers were prepared by melt spinning cellulose acetate butyrate (CAB), cellulose nanocrystals (CNC) and triethyl citrate. A CNC organo-gel dispersion technique was used and the prepared materials (2 and 10 wt% CNC) were melt spun using a twin-screw micro-compounder and drawn to a ratio of 1.5. The microscopy studies showed that the addition of CNC in CAB resulted in defect-free and smooth fiber surfaces. An addition of 10 wt% CNC enhanced the storage modulus and increased the tensile strength and Young’s modulus. Fiber drawing improved the mechanical properties further. In addition, a micromechanical model of the composite material was used to estimate the stiffness and showed that theoretical values were exceeded for the lower concentration of CNC but not reached for the higher concentration. In conclusion, this dispersion technique combined with melt spinning can be used to produce all-cellulose nanocomposites fibers and that both the increase in CNC volume fraction and the fiber drawing increased the mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersons J, Spārniņš E, Joffe R (2006) Stiffness and strength of flax fiber/polymer matrix composites. Polym Compos 27:221–229. doi:10.1002/pc.20184

    Article  CAS  Google Scholar 

  • Ayuk JE, Mathew AP, Oksman K (2009) The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. J Appl Polym Sci 114:2723–2730. doi:10.1002/app.30583

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Sanchez J, El Kissi N, Dufresne A (2004) Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension. Macromolecules 37:1386–1393. doi:10.1021/ma030532a

    Article  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630. doi:10.1163/156855407782106519

    Article  CAS  Google Scholar 

  • Bondeson D, Syre P, Oksman Niska K (2007) All cellulose nanocomposites produced by extrusion. J Biobased Mater Bioenergy 1:367–371. doi:10.1166/jbmb.2007.011

    Article  Google Scholar 

  • Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. doi:10.1038/nnano.2007.379

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374. doi:10.1126/science.1153307

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716. doi:10.1021/bm8010903

    Article  CAS  Google Scholar 

  • Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer 47:1704–1714. doi:10.1016/j.polymer.2006.01.003

    Article  CAS  Google Scholar 

  • Grunert M, Winter W (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30. doi:10.1023/A:1021065905986

    CAS  Google Scholar 

  • Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225. doi:10.1016/S0009-2614(00)01013-7

    Article  CAS  Google Scholar 

  • Herrera MA, Mathew AP, Oksman K (2012) Characterization of cellulose nanowhiskers: a comparison of two industrial bio-residues. IOP Conference Series: Mat Sci Eng 31:012006. doi:10.1088/1757-899X/31/1/012006

    Article  Google Scholar 

  • Hooshmand S, Soroudi A, Skrifvars M (2011) Electro-conductive composite fibers by melt spinning of polypropylene/polyamide/carbon nanotubes. Synth Met 161:1731–1737. doi:10.1016/j.synthmet.2011.06.014

    Article  CAS  Google Scholar 

  • Hooshmand S, Cho S, Skrifvars M, Mathew AP, Oksman K (2014) Melt spun cellulose nanocomposite fibres: comparison of two dispersion techniques. Plast Rubber Compos 43:15–24. doi:10.1179/1743289813Y.0000000066

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127:274–281. doi:10.1002/app.37884

    Article  CAS  Google Scholar 

  • Kosaka PM, Kawano Y, Fantini MC, Petri DF (2006) Structure and properties of maleated linear low-density polyethylene and cellulose acetate butyrate blends. Macromol Mater Eng 291:531–539. doi:10.1002/mame.200500413

    Article  CAS  Google Scholar 

  • Lee SH, Youn JR (2008) Properties of polypropylene/layered-silicate nanocomposites and melt-spun fibers. J Appl Polym Sci 109:1221–1231. doi:10.1002/app.28222

    Article  CAS  Google Scholar 

  • Mazinani S, Ajji A, Dubois C (2010) Structure and properties of melt-spun PET/MWCNT nanocomposite fibers. Polym Eng Sci 50:1956–1968. doi:10.1002/pen.21727

    Article  CAS  Google Scholar 

  • O’Brien JP, Aneja AP (1999) Fibres for the next millennium. Rev Prog Coloration 29:1–7. doi:10.1111/j.1478-4408.1999.tb00122.x

    Article  Google Scholar 

  • Park H, Misra M, Drzal LT, Mohanty AK (2004) “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5:2281–2288. doi:10.1021/bm049690f

    Article  CAS  Google Scholar 

  • Petersson L, Mathew AP, Oksman K (2009) Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites. J Appl Polym Sci 112:2001–2009. doi:10.1002/app.29661

    Article  CAS  Google Scholar 

  • Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D (2005) Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer 46:10355–10363. doi:10.1016/j.polymer.2005.07.106

    Article  Google Scholar 

  • Pötschke P, Andres T, Villmow T, Pegel S, Brünig H, Kobashi K, Fischer D, Häussler L (2010) Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70:343–349. doi:10.1016/j.compscitech.2009.11.005

    Article  Google Scholar 

  • Rodríguez M, Vila-Jato JL, Torres D (1998) Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release 55:67–77. doi:10.1016/S0168-3659(98)00029-7

    Article  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660. doi:10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  • Scaffaro R, Maio A, Tito AC (2012) High performance PA6/CNTs nanohybrid fibers prepared in the melt. Compos Sci Technol 72:1918–1923. doi:10.1016/j.compscitech.2012.08.010

    Article  CAS  Google Scholar 

  • Schadler LS (2004) Polymer-based and polymer-filled nanocomposites. 77–153. doi:10.1002/3527602127.ch2

  • Schroers M, Kokil A, Weder C (2004) Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. J Appl Polym Sci 93:2883–2888. doi:10.1002/app.20870

    Article  CAS  Google Scholar 

  • Segal L, Conrad C (1957) Characterization of cellulose derivatives by means of the X-ray diffractometer. Am Dyest Rep 46:637–642

    CAS  Google Scholar 

  • Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  • Siqueira G, Mathew AP, Oksman K (2011) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71:1886–1892. doi:10.1016/j.compscitech.2011.09.002

    Article  CAS  Google Scholar 

  • Solarski S, Mahjoubi F, Ferreira M, Devaux E, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, silva Ferreira A, Alexandre M, Degee P, Dubois P (2007) (Plasticized) polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci 42:5105–5117. doi:10.1007/s10853-006-0911-0

    Article  CAS  Google Scholar 

  • Solarski S, Ferreira M, Devaux E, Fontaine G, Bachelet P, Bourbigot S, Delobel R, Coszach P, Murariu M, Da Ferreira Silva A, Alexandre M, Degee P, Dubois P (2008) Designing polylactide/clay nanocomposites for textile applications: effect of processing conditions, spinning, and characterization. J Appl Polym Sci 109:841–851. doi:10.1002/app.28138

    Article  CAS  Google Scholar 

  • Van den Berg O, Schroeter M, Capadona JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi) conducting conjugated polymers. J Mater Chem 17:2746–2753. doi:10.1039/B700878C

    Article  Google Scholar 

  • Watson BJ, Hammouda B, Briber RM, Hutcheson SW (2013) Influence of organic liquids on the nanostructure of precipitated cellulose. J Appl Polym Sci 127:2620–2627. doi:10.1002/app.37540

    Article  CAS  Google Scholar 

  • Yoon K, Polk MB, Min BG, Schiraldi DA (2004) Structure and property study of nylon-6/clay nanocomposite fiber. Polym Int 53:2072–2078. doi:10.1002/pi.1630

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Bio4Energy and VINNOVA for the financial support of this work as well as Domsjö Fabriker AB for the supplied materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Oksman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hooshmand, S., Aitomäki, Y., Skrifvars, M. et al. All-cellulose nanocomposite fibers produced by melt spinning cellulose acetate butyrate and cellulose nanocrystals. Cellulose 21, 2665–2678 (2014). https://doi.org/10.1007/s10570-014-0269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0269-4

Keywords

Navigation