Skip to main content
Log in

Influence of drying method and precipitated salts on pyrolysis for nanocelluloses

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The influence of bulk density and drying method on pyrolysis behavior was studied by focusing on the salt content within the nanocellulose (NC) materials. The thermogravimetric curves for NC materials were found to be almost identical between the different bulk densities via the various drying methods. It was therefore concluded that the bulk density and drying method of NC materials had little influence on pyrolysis behavior. By quantitating the remaining salt content within the sulfate-introduced cellulose nanocrystal materials, we discriminated between the sulfate groups bonded onto cellulose and precipitated sulfate from the solvent. The precipitated sulfate was found to accelerate the pyrolysis of NCs in common with the bonded sulfate groups, but in a different rate. These two types of sulfate within the NC materials should have the different catalytic ability on the dehydration of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J App Polym Sci 107:476–486

    Article  CAS  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2010) Thermogravimetric analysis of developing cotton fibers. Thermochim Acta 498:27–32

    Article  CAS  Google Scholar 

  • Browning BL (1967) Methods of wood chemistry, vol 2. Wiley Interscience, New York, pp 589–590

    Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598

    Article  CAS  Google Scholar 

  • Deepa B, Abraham E, Cherian M, Bismarck A, Blaker JJ, Pothan L, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH, Berlin

    Book  Google Scholar 

  • Espinosa SC, Kuhnt T, Johan Foster E, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230

    Article  Google Scholar 

  • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508

    Article  CAS  Google Scholar 

  • Jakab E, Mészáros E, Borsa J (2010) Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers. J Anal Appl Pyrolysis 87:117–123

    Google Scholar 

  • Jazaeri E, Tsuzuki T (2013) Effect of pyrolysis conditions on the properties of carbonaceous nanofibers obtained from freeze-dried cellulose nanofibers. Cellulose 20:707–716

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    Article  CAS  Google Scholar 

  • Jiang F, Han S, Hsieh YL (2013) Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. RSC Adv 3:12366–12375

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  • Kim DY, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33

    Article  CAS  Google Scholar 

  • Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  CAS  Google Scholar 

  • Lédé J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32

    Article  Google Scholar 

  • Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107

    Article  CAS  Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem Geol 136:313–317

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Article  Google Scholar 

  • Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    Article  CAS  Google Scholar 

  • Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655

    Article  CAS  Google Scholar 

  • Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102:5265–5269

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2012a) Zeta potential time dependence reveals the swelling dynamics of wood cellulose nanofibrils. Langmuir 28:818–827

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2012b) Semiquantitative structural analysis of highly anisotropic cellulose nanocolloids. ACS Macro Lett 1:651–655

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2013) Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter 9:3396–3401

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J 122:35–43

    CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (Grant 224452) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kojiro Uetani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uetani, K., Watanabe, Y., Abe, K. et al. Influence of drying method and precipitated salts on pyrolysis for nanocelluloses. Cellulose 21, 1631–1639 (2014). https://doi.org/10.1007/s10570-014-0242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0242-2

Keywords

Navigation