Skip to main content
Log in

The initial structure of cellulose during ammonia pretreatment

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A protocol was developed to freeze-trap (at 150 K) cellulose as it is undergoing liquid ammonia pretreatment, and then to collect X-ray diffraction data from the freeze-trapped reactants as the reaction is allowed to proceed and ammonia is allowed to melt and then evaporate, leaving ammonia-cellulose I. Cellulose adopts a new two-chain crystal form, which we call low temperature phase ammonia-cellulose I (two-chains and ~ten ammonia molecules within a unit cell of a = 15.49 Å, b = 11.35 Å, c = 10.42 Å and γ = 143.5°). A schematic model was developed that is characterized by sheets of hydrophobically stacked cellulose-chains with hydrophilic channels between them that are filled with ammonia molecules. Neighboring chains in these sheets have either different conformations or are staggered with respect to each other. As ammonia is allowed to evaporate, the unit cell size is reduced by a factor of two as the two independent chains become identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285. doi:10.1126/science.223.4633.283

    Article  CAS  Google Scholar 

  • Barry AJ, Peterson FC, King AJ (1936) X-ray studies of reactions of cellulose in non-aqueous systems. I. Interaction of cellulose and liquid ammonia1. J Am Chem Soc 58:333–337

    Article  CAS  Google Scholar 

  • Bellesia G, Chundawat SPS, Langan P et al (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788. doi:10.1021/jp2048844

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural changes of cellulose crystals during the reversible transformation cellulose IIII in Valonia. Holzforschung 25–30

  • Chundawat SPS, Bellesia G, Uppugundla N et al (2011a) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174. doi:10.1021/ja2011115

    Article  CAS  Google Scholar 

  • Chundawat SPS, Donohoe BS, da C Sousa L et al (2011b) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984. doi:10.1039/C0EE00574F

    Article  CAS  Google Scholar 

  • Clark GL, Parker EA (1937) An X-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41:777–786. doi:10.1021/j150384a001

    Article  CAS  Google Scholar 

  • Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines1. J Am Chem Soc 65:1294–1299. doi:10.1021/ja01247a012

    Article  CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792. doi:10.1111/j.1742-4658.2007.05727.x

    Article  CAS  Google Scholar 

  • Lewin M, Roldan LG (1971) The effect of liquid anhydrous ammonia in the structure and morphology of cotton cellulose. J Polym Sci Part C Polym Symp 36:213–229. doi:10.1002/polc.5070360115

    Article  Google Scholar 

  • Lewin M, Rau RO, Sello SB (1974) The role of liquid ammonia in functional textile finishes. Text Res J 44:680–686. doi:10.1177/004051757404400907

    Article  CAS  Google Scholar 

  • Narten AH (1977) Liquid ammonia: molecular correlation functions from x-ray diffraction. J Chem Phys 66:3117

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. doi:10.1021/ja037055w

    Article  CAS  Google Scholar 

  • Nishiyama Y, Wada M, Hanson BL, Langan P (2010) Time-resolved X-ray diffraction microprobe studies of the conversion of cellulose I to ethylenediamine-cellulose I. Cellulose 17:735–745. doi:10.1007/s10570-010-9415-9

    Article  CAS  Google Scholar 

  • Nishiyama Y, Noishiki Y, Wada M (2011) X-ray structure of anhydrous β-chitin at 1 Å resolution. Macromolecules 44:950–957. doi:10.1021/ma102240r

    Article  CAS  Google Scholar 

  • Pandey SN, Nair P (1975) A study of the effect of anhydrous liquid ammonia treatment on cotton. Text Res J 45:648–653. doi:10.1177/004051757504500902

    Article  CAS  Google Scholar 

  • Ricci MA, Nardone M, Ricci FP et al (1995) Microscopic structure of low temperature liquid ammonia: a neutron diffraction experiment. J Chem Phys 102:7650

    Article  CAS  Google Scholar 

  • Rousselle MA, Nelson ML, Hassenboehler CB, Legendre DC (1976) Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical properties. Text Res J 46:304–310. doi:10.1177/004051757604600412

    CAS  Google Scholar 

  • Sawada D, Nishiyama Y, Langan P et al (2012) Water in crystalline fibers of dihydrate β-chitin results in unexpected absence of intramolecular hydrogen bonding. PLoS ONE 7:e39376. doi:10.1371/journal.pone.0039376

    Article  CAS  Google Scholar 

  • Sugiyama J, Harada H, Saiki H (1987) Crystalline morphology of Valonia macrophysa cellulose IIII revealed by direct lattice imaging. Int J Biol Macromol 9:122–130. doi:10.1016/0141-8130(87)90039-0

    Article  CAS  Google Scholar 

  • Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. doi:10.1021/ma00009a050

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175. doi:10.1021/ma00014a033

    Article  CAS  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018. doi:10.1016/j.biortech.2005.01.016

    Article  CAS  Google Scholar 

  • Wada M (2001) In situ observation of the crystalline transformation from cellulose IIII to Iβ. Macromolecules 34:3271–3275. doi:10.1021/ma0013354

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555. doi:10.1021/ma0485585

    Article  CAS  Google Scholar 

  • Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia − cellulose I: new insights into the conversion of cellulose i to cellulose IIII. Macromolecules 39:2947–2952. doi:10.1021/ma060228s

    Article  CAS  Google Scholar 

  • Wada M, Nishiyama Y, Bellesia G et al (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F (1993) CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317. doi:10.1021/ma00058a020

    Article  CAS  Google Scholar 

  • Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397. doi:10.1021/ma970503y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Genomic Science Program of the Office of Biological and Environmental Research, US Department of Energy, under FWP ERKP752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Sawada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 826 kb)

Supplementary material 2 (DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, D., Hanson, L., Wada, M. et al. The initial structure of cellulose during ammonia pretreatment. Cellulose 21, 1117–1126 (2014). https://doi.org/10.1007/s10570-014-0218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0218-2

Keywords

Navigation