Skip to main content

Advertisement

Log in

Thermoresponsive hybrid hydrogel of oxidized nanocellulose using a polypeptide crosslinker

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Thermoresponsive hybrid nanocellulose hydrogels were prepared from a mixture of oxidized nanocellulose and elastin-like polypeptide (ELP). Positively charged ELP was used as a polymeric crosslinker for conjugation with negatively charged nanocellulose. Hydrogel formation was triggered by a simple increase in temperature, and the hydrogel was reversibly returned to the liquid phase by decreasing temperature. Surface potential measurement confirmed the electrostatic properties of oxidized nanocellulose and ELP molecules. The surface morphology of hydrogels was observed by atomic force microscopy and field emission-scanning electron microscopy. Conformational changes in the ELP/nanocellulose hybrid were characterized by circular dichroism. The ELP/nanocellulose hybrid hydrogel was noncytotoxic and suitable for encapsulating cells, indicating its potential for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473

    Article  Google Scholar 

  • Antonov YA, Wolf BA (2005) Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water. Biomacromolecules 6(6):2980–2989

    Article  CAS  Google Scholar 

  • Antonov YA, Lefebvre J, Doublier JL (1999) On the one-phase state of aqueous protein uncharged polymer systems: casein–guar gum system. J Appl Polym Sci 71(3):471–482

    Article  CAS  Google Scholar 

  • Bai YY, Zhang Z, Zhang AP, Chen L, He CL, Zhuang XL, Chen XS (2012) Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. Carbohydr Polym 89(4):1207–1214

    Article  CAS  Google Scholar 

  • Bidwell GL, Raucher D (2010) Cell penetrating elastin-like polypeptides for therapeutic peptide delivery. Adv Drug Deliv Rev 62(15):1486–1496

    Article  CAS  Google Scholar 

  • Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Narita T, Ducouret G, Merten OW (2010) Study on the sol–gel transition of xyloglucan hydrogels. Carbohydr Polym 80(2):555–562

    Article  CAS  Google Scholar 

  • Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  CAS  Google Scholar 

  • Chang CY, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209(12):1266–1273

    Article  CAS  Google Scholar 

  • Cheng J, Na K, Kim HS, Lee CK, Hyun J (2013) “Smart” microspheres for self-renewal of embryonic stem cells. Macromol Res 21(2):134–136

    Article  CAS  Google Scholar 

  • Cho Y, Sagle LB, Iimura S, Zhang YJ, Kherb J, Chilkoti A, Scholtz JM, Cremer PS (2009) Hydrogen bonding of beta-turn structure is stabilized in D2O. J Am Chem Soc 131(42):15188–15193

    Article  CAS  Google Scholar 

  • de Kruif CG, Weinbreck F, de Vries R (2004) Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci 9(5):340–349

    Article  Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14(9):3338–3345

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6(1):507–513

    Article  CAS  Google Scholar 

  • Ekici S (2011) Intelligent poly (N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J Mater Sci 46(9):2843–2850

    Article  CAS  Google Scholar 

  • Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    Article  CAS  Google Scholar 

  • Halake KS, Lee J (2014) Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores. Carbohydr Polym (in press)

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Karppinen A, Vesterinen AH, Saarinen T, Pietikainen P, Seppala J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068

    Article  CAS  Google Scholar 

  • Marci G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444

    Article  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3(2):357–367

    Article  CAS  Google Scholar 

  • Myllytie P, Holappa S, Paltakari J, Laine J (2009) Effect of polymers on aggregation of cellulose fibrils and its implication on strength development in wet paper web. Nord Pulp Pap Res J 24(2):125–134

    Article  CAS  Google Scholar 

  • Nettles DL, Chilkoti A, Setton LA (2010) Applications of elastin-like polypeptides in tissue engineering. Adv Drug Deliv Rev 62(15):1479–1485

    Article  CAS  Google Scholar 

  • Nuhn H, Klok HA (2008) Secondary structure formation and LCST behavior of short elastin-like peptides. Biomacromolecules 9(10):2755–2763

    Article  CAS  Google Scholar 

  • Ostlund A, Lundberg D, Nordstierna L, Holmberg K, Nyden M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10(9):2401–2407

    Article  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Schmitt C, Sanchez C, Desobry-Banon S, Hardy J (1998) Structure and technofunctional properties of protein–polysaccharide complexes: a review. Crit Rev Food Sci Nutr 38(8):689–753

    Article  CAS  Google Scholar 

  • Silva SMC, Pinto FV, Antunes FE, Miguel MG, Sousa JJS, Pais A (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2):333–340

    Article  CAS  Google Scholar 

  • Simnick AJ, Lim DW, Chow D, Chilkoti A (2007) Biomedical and biotechnological applications of elastin-like polypeptides. Polym Rev 47(1):121–154

    Article  CAS  Google Scholar 

  • Tan JJ, Liu RG, Wang W, Liu WY, Tian Y, Wu M, Huang Y (2010) Controllable aggregation and reversible pH sensitivity of AuNPs regulated by carboxymethyl cellulose. Langmuir 26(3):2093–2098

    Article  CAS  Google Scholar 

  • Tolstoguzov VB (1991) Functional properties of food proteins and role of protein–polysaccharide interaction. Food Hydrocoll 4(6):429–468

    Article  CAS  Google Scholar 

  • Turgeon SL, Schmitt C, Sanchez C (2007) Protein–polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12(4–5):166–178

    Article  CAS  Google Scholar 

  • Urry DW (1993) Molecular machines: how motion and other functions of living organisms can result from reversible chemical-changes. Angew Chem Int Ed Engl 32(6):819–841

    Article  Google Scholar 

  • Zhang YY, Xu XJ, Zhang L (2008) Dynamic viscoelastic behavior of triple helical lentinan in water: effect of temperature. Carbohydr Polym 73(1):26–34

    Article  CAS  Google Scholar 

  • Zhang Z, Chen L, Zhao CW, Bai YY, Deng MX, Shan HL, Zhuang XL, Chen XS, Jing XB (2011) Thermo- and pH-responsive HPC-g-AA/AA hydrogels for controlled drug delivery applications. Polymer 52(3):676–682

    Article  CAS  Google Scholar 

  • Zhao HB, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr Polym 67(1):97–103

    Article  CAS  Google Scholar 

  • Zhao Q, Qian JW, An QF, Gao CJ, Gui ZL, Jin HT (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 333(1–2):68–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (Grant Number 2013023612). We also acknowledge support from the Research Institute for Agriculture and Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Hyun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Park, M. & Hyun, J. Thermoresponsive hybrid hydrogel of oxidized nanocellulose using a polypeptide crosslinker. Cellulose 21, 1699–1708 (2014). https://doi.org/10.1007/s10570-014-0208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0208-4

Keywords