Skip to main content
Log in

Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing

  • Communication
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work outlines inexpensive patterning methodologies to create open-air microfluidic paper-based devices. A phase-separation methodology was used to obtain biomimetic superhydrophobic paper, hierarchically composed by micro and nano topographies. Writing and printing are simple actions that can be used to pattern flat superhydrophobic paper with more wettable channels. In particular, inkjet printing permits controlling the wettability of the surface by changing the darkness of the printed regions. The difference between capillary forces provides the possibility to control and drive liquid flows through the open path lines, just by titling the piece of paper. Additionally, maintaining a continuous flow, it is possible to direct the liquid at different volumetric rates in a horizontal position along non-linear channel paths printed/written over the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934. doi:10.1021/ac800604v

    Article  CAS  Google Scholar 

  • Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398(2):885–893. doi:10.1007/s00216-010-4011-2

    Article  CAS  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785–4790. doi:10.1021/la703766c

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Bhushan B (2012) Bioinspired structured surfaces. Langmuir 28(3):1698–1714. doi:10.1021/la2043729

    Article  CAS  Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367(1894):1631–1672. doi:10.1098/rsta.2009.0014

    Article  CAS  Google Scholar 

  • Cai X, Klauke N, Glidle A, Cobbold P, Smith GL, Cooper JM (2002) Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 74(4):908–914. doi:10.1021/ac010941+

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22(2):249–260. doi:10.1002/adma.200900821

    Article  CAS  Google Scholar 

  • Gau H, Herminghaus S, Lenz P, Lipowsky R (1999) Liquid morphologies on structured surfaces: from microchannels to microchips. Science 283(5398):46–49. doi:10.1126/science.283.5398.46

    Article  CAS  Google Scholar 

  • Guo ZG, Liu WM, Su BL (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interface Sci 353(2):335–355. doi:10.1016/j.jcis.2010.08.047

    Article  CAS  Google Scholar 

  • Hofmann O, Voirin G, Niedermann P, Manz A (2002) Three-dimensional microfluidic confinement for efficient sample delivery to biosensor surfaces. Application to immunoassays on planar optical waveguides. Anal Chem 74(20):5243–5250. doi:10.1021/ac025777k

    Article  CAS  Google Scholar 

  • Hsu CH, Chen CC, Folch A (2004) “Microcanals” for micropipette access to single cells in microfluidic environments. Lab Chip 4(5):420–424. doi:10.1039/b404956j

    Article  CAS  Google Scholar 

  • Jiang L, Donghua Univ SKLMCF, Polymer M (2005) Super-hydrophobic surfaces: from natural to artificial. Proceedings of 2005 international conference on advanced fibers and polymer materials. Chemical Industry Press, Beijing

  • Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75(2):441–447. doi:10.1016/j.colsurfb.2009.09.032

    Article  CAS  Google Scholar 

  • Li X, Tian JF, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloid Surf B 76(2):564–570. doi:10.1016/j.colsurfb.2009.12.023

    Article  CAS  Google Scholar 

  • Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(1). doi:10.1063/1.3687398

  • Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9):1497–1500. doi:10.1002/elps.200800563

    Article  CAS  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

    Article  CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677. doi:10.1006/anbo.1997.0400

    Article  Google Scholar 

  • Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF (2013) Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf A 416:51–55. doi:10.1016/j.colsurfa.2012.09.052

    Article  Google Scholar 

  • Oliveira NM, Neto AI, Song WL, Mano JF (2010) Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface. Appl Phys Express 3(8). doi:10.1143/apex.3.085205

  • Roach P, Shirtcliffe NJ, Newton MI (2008) Progess in superhydrophobic surface development. Soft Matter 4(2):224–240. doi:10.1039/B712575p

    Article  CAS  Google Scholar 

  • Runyon MK, Johnson-Kerner BL, Ismagilov RF (2004) Minimal functional model of hemostasis in a biomimetic microfluidic system. Angew Chem Int Ed 43(12):1531–1536. doi:10.1002/anie.200353428

    Article  CAS  Google Scholar 

  • Stratakis E, Ranella A, Fotakis C (2011) Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics 5(1). doi:10.1063/1.3553235

  • van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2):1–31. doi:10.1016/0376-7388(96)00088-9

    Article  Google Scholar 

  • Wei ZJ, Liu WL, Tian D, Xiao CL, Wang XQ (2010) Preparation of lotus-like superhydrophobic fluoropolymer films. Appl Surf Sci 256(12):3972–3976. doi:10.1016/j.apsusc.2010.01.059

    Article  CAS  Google Scholar 

  • Xing SY, Harake RS, Pan TR (2011) Droplet-driven transports on superhydrophobic-patterned surface microfluidics. Lab Chip 11(21):3642–3648. doi:10.1039/c1lc20390h

    Article  CAS  Google Scholar 

  • You I, Kang SM, Lee S, Cho YO, Kim JB, Lee SB, Nam YS, Lee H (2012) Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. Angew Chem Int Ed 51(25):6126–6130. doi:10.1002/anie.201200329

    Article  CAS  Google Scholar 

  • Yuan Z, Chen H, Tang J, Chen X, Zhao D, Wang Z (2007) Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. Surf Coat Technol 201(16–17):7138–7142. doi:10.1016/j.surfcoat.2007.01.021

    Article  CAS  Google Scholar 

  • Zhang X, Zhao N, Liang S, Lu X, Li X, Xie Q, Zhang X, Xu J (2008) Facile creation of biomimetic systems at the interface and in bulk. Adv Mater 20(15):2938–2946. doi:10.1002/adma.200800626

    Article  CAS  Google Scholar 

  • Zhao WA, van den Berg A (2008) Lab on paper. Lab Chip 8(12):1988–1991. doi:10.1039/B814043j

    Article  CAS  Google Scholar 

  • Zhao B, Moore JS, Beebe DJ (2002) Principles of surface-directed liquid flow in microfluidic channels. Anal Chem 74(16):4259–4268. doi:10.1021/ac020269w

    Article  CAS  Google Scholar 

  • Zhao N, Xu J, Xie Q, Weng L, Guo X, Zhang X, Shi L (2005) Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol Rapid Commun 26(13):1075–1080. doi:10.1002/marc.200500188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João F. Mano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, M.P., Mano, J.F. Patterned superhydrophobic paper for microfluidic devices obtained by writing and printing. Cellulose 20, 2185–2190 (2013). https://doi.org/10.1007/s10570-013-9991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9991-6

Keywords

Navigation