Skip to main content

Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose

Abstract

The neutron structure of a complex of EDA with cellulose has been determined to reveal the location of hydrogen atoms involved in hydrogen-bonding. EDA disrupts the hydrogen-bonding pattern of naturally occurring cellulose by accepting a strong hydrogen-bond from the O6 hydroxymethyl group as the conformation of this group is rotated from tg to gt. The O3-H·O5 intrachain hydrogen-bond commonly found in cellulose allomorphs is observed to be disordered in the neutron structure, and quantum chemistry and molecular dynamics calculations show that O3 prefers to donate to EDA. The hydrogen-bonding arrangement is highly dynamic with bonds continually being formed and broken thus explaining the difficulty in locating all of the hydrogen atoms in the neutron scattering density maps. Comparison with other polysaccharide-amino complexes supports a common underlying mechanism for amine disruption of cellulose.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83:1637–1641

    Google Scholar 

  2. Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, USA

    Google Scholar 

  3. Bellesia G, Chundawat SPS, Langan P, Dale BE, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788

    Article  CAS  Google Scholar 

  4. Bellesia G, Chundawat SPS, Langan P, Redondo A, Dale BE, Gnanakaran S (2012) Coarse-grained model for the interconversion between native and liquid ammonia treated crystalline cellulose. J Phys Chem B 116:8031–8037

    Article  CAS  Google Scholar 

  5. Biegler-König F AIM (2000) version 1.0; University of Applied Science: Bielefeld, Germany

  6. Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural changes of cellulose crystals during the reversible transformation cellulose I: cellulose III in Valonia. Holzforschung 40:25–30

    CAS  Google Scholar 

  7. Chanzy H, Henrissat B, Vincendon M, Tanner S, Belton PS (1987) Solid-state C13 NMR and electron microscopy study on the reversible cellulose I: cellulose IIII transformation in Valonia. Carbohydr Res 160:1–11

    Article  CAS  Google Scholar 

  8. Chundawat SPS, Bellesia G, Uppugundla N et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  Google Scholar 

  9. Chundawat SPS, Chang L, Gunawan C et al (2012) Guayule as a feed stock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Ind Crops Prod 37:486–492

    Article  CAS  Google Scholar 

  10. Clark GL, Parker EA (1937) An x-ray diffraction study of the action of liquid ammonia on cellulose and its derivatives. J Phys Chem 41:777–786

    Article  CAS  Google Scholar 

  11. da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425

    Article  Google Scholar 

  12. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  13. Davidson RW, Schuerch C (1972) Method of forming wood. US Patent No. 3,642,042, Issued Feb 15, 1972

  14. Davis WE, Barry AJ, Peterson FC, King AJ (1943) X-ray studies of reactions of cellulose in non-aqueous systems. II. Interaction of cellulose and primary amines. J Am Chem Soc 65:1294–1299

    Article  CAS  Google Scholar 

  15. Detroy RW, Lindenfelser LA, Sommer S, Orton WL (1981) Bioconversion of wheat straw to ethanol: chemical modification, enzymatic hydrolysis, and fermentation. Biotechnol Bioeng 23:1527–1536

    Article  CAS  Google Scholar 

  16. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132

    Article  Google Scholar 

  17. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  18. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  19. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  20. Guvench O, Greene SN, Kamath G et al (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  CAS  Google Scholar 

  21. Guvench O, Hatcher E, Venable RM et al (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  CAS  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  23. Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792

    Article  CAS  Google Scholar 

  24. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  25. Klemm D, Philipp B, Heinze U, Wagenknecht W (1998) In: Comprehensive cellulose chemistry; Wiley-VCH, New York Vol I, 152-154

  26. Klenkova NI (1967) Reaction of cellulose with amines as a prospective means of activating cellulose and increasing its reactivity in the synthesis of various derivatives. Zh Prikl Khim 40:2191–2208

    CAS  Google Scholar 

  27. Langan P, Denny RC, Mahendrasingam A, Mason SA, Jaber A (1996) Collecting and processing neutron fibre diffraction data from a single-crystal diffractometer. J Appl Crystallogr 29:383–389

    Article  CAS  Google Scholar 

  28. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  29. Langan P, Gnanakaran S, Rector KD, Pawley N, Fox DT, Cho DW, Hammel KE (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:38203833

    Article  Google Scholar 

  30. Langan P, Evans BR, Foston M et al (2012) Neutron technologies for bioenergy research. Ind Biotechnol 8:209–216

    Article  CAS  Google Scholar 

  31. MacKerell Bashford D, Bellott et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  32. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  33. Nishiyama Y, Kuga S, Wada M, Okano T (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397

    Article  Google Scholar 

  34. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  35. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  36. Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  37. Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen-bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202

    Article  CAS  Google Scholar 

  38. Pentoney RE (1966) Liquid ammonia-solvent combinations in wood plasticization: properties of treated wood. Ind. Engr. Chem. Prod. Res Devel 5:105–110

    Article  CAS  Google Scholar 

  39. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  40. Rajkumar G, Al-Khayat HA, Eakins F et al (2005) FibreFix—A new integrated CCP13 software package. Fibre Diffract Rev 13:11–18

    Google Scholar 

  41. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  42. Sawada D, Nishiyama Y, Langan P, Forsyth VT, Kimura S, Wada M (2012) Water in crystalline fibers of dihydrate β-chitin results in unexpected absence of intramolecular hydrogen bonding. PLoS ONE 7:e39376

    Article  CAS  Google Scholar 

  43. Sawada D, Kimura S, Nishiyama Y, Langan P, Wada M (2013) The crystal structure of mono-ethylene diamine β-chitin from synchrotron X-ray fiber diffraction. Carbohydr Polym 92:1737–1742

    Article  CAS  Google Scholar 

  44. Schuerch C, Burdick MP, Mahdalik M (1966) Liquid ammonia-solvent combinations in wood plasticization. Ind. Engr. Chem. Prod. Res & Devel 5:101–105

    Article  CAS  Google Scholar 

  45. Sheldrick GM (1997) SHELX-97, a program for the refinement of single-crystal diffraction data. University of Gottingen, Gottingen

    Google Scholar 

  46. Sugiyama J, Persson J, Chanzy H (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466

    Article  CAS  Google Scholar 

  47. Sugiyama J, Vuong R, Chanzy H (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  48. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Biosour Technol 96:2014

    Article  CAS  Google Scholar 

  49. Umikalsom MS, Ariff AB, Zulkifli HS, Tong CC, Hassan MA, Karim MIA (1997) The treatment of oil palm empty fruit bunch fibre for subsequent use as substrate for cellulase production by Chaetomium globosum Kunze. Bioresour Technol 62:1–9

    Article  CAS  Google Scholar 

  50. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose IIII prepared in supercritical ammonia. Macromolecules 34:1237–1243

    Article  CAS  Google Scholar 

  51. Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 23:8548–8555

    Article  Google Scholar 

  52. Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromolecules 39:2947–2952

    Article  CAS  Google Scholar 

  53. Wada M, Kwon GJ, Nishiyama Y (2008) Structure and thermal behavior of a cellulose I-ethylene diamine complex. Biomacromolecules 9:2898–2904

    Article  CAS  Google Scholar 

  54. Wada M, Heux L, Nishiyama Y, Langan P (2009) The structure of the complex of cellulose I with ethylene diamine by X-ray crystallography and crosspolarization/magic angle apinning 13C nuclear magnetic resonance. Cellulose 16:943–957

    Article  CAS  Google Scholar 

  55. Wada M, Nishiyama Y, Bellesia G, Forsyth VT, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206

    Article  CAS  Google Scholar 

  56. Xiao M, Frey MW (2007) The role of salt on cellulose dissolution in ethylene diamine/salt solvent systems. Cellulose 14:225–234

    Article  CAS  Google Scholar 

  57. Yanai Y, Shimizu Y (2006) The liquid ammonia treatment of cotton fibers: comparison and combination with mercerization using a practical unit. Sen’i Gakkaishi 62:100–105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank beam line D19 at the Institute Laue Langevin for use of facilities, John Allibon, John Archer and Sax Mason for support with data collection, and Thomas Rosenau for helpful discussions and advice. MW was supported by a Grant-in-Aid for Scientific Research (18780131). This study was partly funded by the French Agence Nationale de la Reserche. PL and LP were partly funded by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy, under FWP ERKP752. PL was partly support by the Center for Structural Molecular Biology (CSMB) which is supported by the Office of Biological and Environmental Research, using facilities supported by the U. S. Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. This research used resources of the Hopeper supercomputer at NERSC, supported by the Office of Science of DOE under Contract No. DE-AC02-05CH11231. VTF acknowledges support from the UK Engineering and Physical Sciences Research Council (EPSRC) for the construction of the D19 diffractometer at the ILL under grant GR/R47950/01

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daisuke Sawada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sawada, D., Nishiyama, Y., Petridis, L. et al. Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose. Cellulose 20, 1563–1571 (2013). https://doi.org/10.1007/s10570-013-9974-7

Download citation

Keywords

  • Neutron diffraction
  • Computational simulation
  • Cellulose amino complex
  • Ethylene diamine
  • Crystal transition
  • Hydrogen-bond