Abstract
In the face of challenges in the development of excellent biocompatible materials for microfluidic device fabrication, we demonstrated that cross-linked cellulose (RCC) hydrogel can be used as the bulk material for microchips. The cellulose hydrogel was prepared from cellulose solution dissolved in an 8 wt% LiOH/15 wt% urea aqueous system with cooling by crosslinking with epichlorohydrin. Collagen as a key extracellular matrix component for promoting cell cultivation was cross-linked in the cellulose hydrogel to obtain cellulose–collagen (RCC/C) hybrid hydrogels. The experimental results revealed that cellulose-based hydrogel microchips with well-defined 2D or 3D microstructures possessed excellent structural replication ability, good mechanical properties, and cytocompatibility for cell culture as well as excellent dimensional stability at elevated temperature. The hydrogel, as a transparent microchip material, had no effect on the fluorescence behaviors of FITC-dextran and rhodamine-dextran, leading to the good conjunction with fluorescent detection and imaging. Moreover, collagen could be immobilized in the RCC/C hydrogel scaffold for promoting cell growth and generating stable chemical concentration gradients, leading to superior cytocompatibility. This work provides new hydrogel materials for the microfluidic technology field and mimicks a 3D cell culture microenvironment for cell-based tissue engineering and drug screening.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bettinger CJ, Borenstein JT (2010) Biomaterials-based microfluidics for engineered tissue constructs. Soft Matter 6:4999–5015. doi:10.1039/c0sm00247j
Bettinger CJ, Cyr KM, Matsumoto A, Langer R, Borenstein JT, Kaplan DL (2007) Silk fibroin microfluidic devices. Adv Mater 19:2847–2850. doi:10.1002/adma.200602487
Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2008) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng A 15:1645–1653. doi:10.1089/ten.tea.2008.0441
Cabodi M, Choi NW, Gleghorn JP, Lee CSD, Bonassar LJ, Stroock AD (2005) A microfluidic biomaterial. J Am Chem Soc 127:13788–13789. doi:10.1021/ja054820t
Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. doi:10.1002/mabi.200400222
Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Pol Phys 44:3093–3101. doi:10.1002/polb.20938
Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351. doi:10.1021/ma801110g
Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273. doi:10.1002/macp.200800161
Chang C, Peng J, Zhang L, Pang DW (2009a) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776. doi:10.1039/b908835k
Chang C, Duan B, Zhang L (2009b) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50:5467–5473. doi:10.1016/j.polymer.2009.06.001
Chang C, Zhang L, Zhou J, Kennedy JF (2010a) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127. doi:10.1016/j.carbpol.2010.04.033
Chang C, Duan B, Cai J, Zhang L (2010b) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. doi:10.1016/j.eurpolymj.2009.04.033
Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH-and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648. doi:10.1021/ma102801f
Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 67A:1170–1180. doi:10.1002/jbm.a.10164
Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769. doi:10.1039/b618463d
Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915. doi:10.1038/nmat2022
Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196. doi:10.1016/j.mvr.2006.02.005
Cuchiara MP, Allen ACB, Chen TM, Miller JS, West JL (2010) Multilayer microfluidic PEGDA hydrogels. Biomaterials 31:5491–5497. doi:10.1016/j.biomaterials.2010.03.031
Cushing MC, Anseth KS (2007) Hydrogel cell cultures. Science 316:1133–1134. doi:10.1126/science.1140171
Dang NH, Torimoto Y, Schlossman SF, Morimoto C (1990) Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med 172:649–652. doi:10.1084/jem.172.2.649
Dedhar S, Ruoslahti E, Pierschbacher MD (1987) A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol 104:585–593. doi:10.1083/jcb.104.3.585
Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260. doi:10.1002/adma.200900821
Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3:1223–1230. doi:10.1039/b706563a
Duan X, Sheardown H (2006) Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials 27:4608–4617. doi:10.1016/j.biomaterials.2006.04.022
Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6:507–513. doi:10.1021/bm049409x
Fearon FWG, Zeigler JM (1990) Silicon-based polymer science: a comprehensive resource. American Chemical Society Publication, Washington
Fricain JC, Granja PL, Barbosa MA, de Jeso B, Barthe N, Baquey C (2002) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980. doi:10.1016/s0142-9612(01)00152-1
Geckil H, Xu F, Zhang X, Moon SJ, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5:469–484. doi:10.2217/nnm.10.12
Golden AP, Tien J (2007) Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7:720–725. doi:10.1039/b618409j
Grayson A, Choi I, Tyler B, Wang P, Brem H, Cima M, Langer R (2003) Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater 2:767–772. doi:10.1038/nmat998
Gruber HE, Hoelscher GL, Leslie K, Ingram JA, Hanley-Jr EN (2006) Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production. Biomaterials 27:371–376. doi:10.1016/j.biomaterials.2005.06.032
Haessler U, Kalinin Y, Swartz MA, Wu M (2009) An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed Microdevices 11:827–835. doi:10.1007/s10544-009-9299-3
Hanski C, Huhler T, Gossrau R, Reutter W (1988) Direct evidence forthebindingofrat liver DPPIV to collagen in vitro. Exp Cell Res 178:64–72. doi:10.1016/0014-4827(88)90378-3
Huang GY, Zhou LH, Zhang QC, Chen YM, Sun W, Xu F, Lu TJ (2011) Microfluidic hydrogels for tissue engineering. Biofabrication 3:12001–12013. doi:10.1088/1758-5082/3/1/012001
Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic hydrogels with enhanced mechanical stability. Soft Matter 8:10687–10694. doi:10.1039/c2sm26126j
Huebsch N, Gilbert M, Healy KE (2005) Analysis of sterilization protocols for peptide modified hydrogels. J Biomed Mater Res B 74B:440–447. doi:10.1002/jbm.b.30155
Johann RM, Renaud P (2007) Microfluidic patterning of alginate hydrogels. Biointerphases 2:73–79. doi:10.1116/1.2746873
King KR, Wang CCJ, Kaazempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007–2012. doi:10.1002/adma.200306522
Lee AG, Arena CP, Beebe DJ, Palecek SP (2010a) Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels. Biomacromolecules 11:3316–3324. doi:10.1021/bm100792y
Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K, Park JK, Yoo SS (2010b) On demand threedimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105:1178–1186. doi:10.1002/bit.22613
Lee W, Son J, Yoo SS, Park JK (2011) Facile and biocompatible fabrication of chemically sol–gel transitional hydrogel free-standing microarchitectures. Biomacromolecules 12:14–18. doi:10.1021/bm101246u
Li LM, Wang XY, Hu LS, Chen RS, Huang Y, Chen SJ, Huang WH, Huo K, Chu PK (2012) Vascular lumen simulation and highly-sensitive nitric oxide detection using three-dimensional gelatin chip coupled to TiC/C nanowire arrays microelectrode. Lab Chip 12:4249–4256. doi:10.1039/c2lc40148g
Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602. doi:10.1002/macp.200600579
Liang S, Wu J, Tian H, Zhang L, Xu J (2008) High-strength cellulose/poly (ethylene glycol) gels. Chem Sus Chem 1:558–563. doi:10.1002/cssc.200800003
Liao E, Yaszemski M, Krebsbach P, Hollister S (2007) Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly (propylene fumarate) scaffolds. Tissue Eng 13:537–550. doi:10.1089/ten.2006.0117
Ling Y, Rubin J, Deng Y, Demirci C, Huang U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762. doi:10.1039/b615486g
Liu S, Zhang L (2009) Effect of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198. doi:10/1007/s10570-008-9268-7
Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G, Kaplan DL (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28:5271–5279. doi:10.1016/j.biomaterials.2007.08.008
Martson M, Viljanto J, Hurme T, Saukko P (1998) Biocompatibility of cellulose scaffold with bone. Eur Surg Res 30:426–432. doi:10.1159/000008609
Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose scaffold degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995. doi:10.1016/s0142-9612(99)00094-0
Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133. doi:10.1002/jbm.820230110
Paguirigan A, Beebe D (2006) Gelatin based microfluidic devices for cell culture. Lab Chip 6:407–413. doi:10.1039/b517524k
Park JJ, Luo X, Payne GF, Bentley WE, Ghodssi R, Rubloff GW (2006) Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab Chip 6:1315–1321. doi:10.1039/b603101c
Qi H, Chang C, Zhang L (2008) Effect of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787. doi:10.1007/s10570-008-9230-8
Rajan N, Habermehl J, Coté MF, Doillon CJ, Mantovani D (2007) Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc 1:2753–2758. doi:10.1038/nprot.2006.430
Rouwkema J, Rivron NC, Van-Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441. doi:10.1016/j.tibtech.2008.04.009
Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitz DA (2009) Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci USA 106:18149–18154. doi:10.1073/pnas.0903163106
Rubin K, Hook M, Obrink B, Timpl R (1981) Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell 24:463–470. doi:10.1016/0092-8674(81)90337-8
Ruoslahti E, Pierschbache MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518. doi:10.1016/0092-8674(86)90259-x
Ruoslahti E, Pierschbache MD (1987) New perspectives in cell adhesion: RGD and intergrins. Science 238:491–497. doi:10.1126/science.2821619
Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635. doi:10.1007/s10544-007-9051-9
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329. doi:10.1002/adma.200802106
Tierney CM, Haugh MG, Liedl J, Mulcahy F, Hayes B, O’Brien FJ (2009) The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed 2:202–209. doi:10.1016/j.jmbbm.2008.08.007
Wang CJ, Li X, Lin B, Shim S, Ming G, Levchenko A (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab Chip 8:227–237. doi:10.1039/b713945d
Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058
Acknowledgments
This work was supported by the National Basic Research Program of China (973 Program, 2010CB732203) and the National Natural Science Foundation of China (20874079).
Author information
Authors and Affiliations
Corresponding author
Additional information
Ying Pei and Xueying Wang contributed equally to this paper.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (AVI 12319 kb)
Rights and permissions
About this article
Cite this article
Pei, Y., Wang, X., Huang, W. et al. Cellulose-based hydrogels with excellent microstructural replication ability and cytocompatibility for microfluidic devices. Cellulose 20, 1897–1909 (2013). https://doi.org/10.1007/s10570-013-9930-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-013-9930-6

