, Volume 21, Issue 1, pp 529–534 | Cite as

Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic acid)-polyethylene glycol and nanofibrillated cellulose

  • Rajalaxmi Dash
  • Carolina A. Cateto
  • Arthur J. Ragauskas
Original Paper


This study demonstrates the preparation of a renewable and biocompatible co-cross-linked nanocomposite hydrogel from poly(methyl vinyl ether-co-maleic acid), poly(ethylene glycol) and nanofibrillated cellulose (NFC). The cross-linking reaction was favored by the formation of ester linkages as evidenced by Fourier transform infrared spectroscopy. The increase in gel fraction content of the treated NFC varied from 22 to 85 % which exhibited an increase in degree of chemical cross-linking to form a rigid network with the addition of varying amount of NFC (20–60 %). This increase in gel rigidity influenced gel swelling, showing relatively reduced water uptake ability above 40 % NFC. Rheological measurements indicated the formation of gels with superior mechanical properties.


NFC PEG PMVEMA Nanocomposite Hydrogels 



The authors wish to thank Forest Service R&D special funding on Cellulose Nano-Materials (2012) and Solvay S.A. for financial support.


  1. Abd El-Rehim HA, Hegazy E-SA, Diaa DAJ (2006) Characterization of super-absorbent materials based on carboxymethylcellulose sodium salt prepared by electron beam irradiation. Macromol Sci Pure Appl Chem 43:101–113CrossRefGoogle Scholar
  2. Bai W, Zhang H, Liu B, Wu Y, Song J (2010) Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. J Soil Use Manage 26:253–260CrossRefGoogle Scholar
  3. Barcus RL, Bjorkquist DW (1991) Absorbent cellulosic fibers modified with maleate-methyl vinyl ether copolymer and polyol. PCT Int Appl WO 9110010(A1):19910711 Google Scholar
  4. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  5. Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose 17:875–889CrossRefGoogle Scholar
  6. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRefGoogle Scholar
  7. El Salmawi KM, Ibrahim SM (2011) Characterization of superabsorbent carboxymethyl cellulose/clay hydrogel prepared by electron beam irradiation. Macromol Res 19:1029–1034CrossRefGoogle Scholar
  8. Eldin MSM, El-Sherif HM, Soliman EA, Elzatahry AA, Omer AMJ (2011) Polyacrylamide-grafted carboxymethyl cellulose: smart pH-sensitive hydrogel for protein concentration. Appl Polym Sci 122:469–479CrossRefGoogle Scholar
  9. Eyholzer C, Borges de Couraça A, Duc F, Bourbon PE, Tingaut P, Zimmermann T, Manson JAE, Oskman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12:1419–1427CrossRefGoogle Scholar
  10. Gao D, Heimann RB, Williams MC, Wardhaugh LT, Muhammad M (1999) Rheological properties of poly(acrylamide)-bentonite composite hydrogels. J Mater Sci 34:1543–1552CrossRefGoogle Scholar
  11. Garcia DM, Escobar JL, Bada N, Casquero J, Hernáez E, Katime I (2004) Synthesis and characterization of poly(methacrylic acid) hydrogels for metoclopramide delivery. Eur Polym J 40:1637–1643CrossRefGoogle Scholar
  12. Ghahramanpoor MK, Najafabadi SAH, Abdouss M, Bagheri F, Eslaminejad MB (2011) Hydrophobically-modified alginate gel system: utility in the repair of articular cartilage defects. J Mater Sci Mater Med 22:2365–2375CrossRefGoogle Scholar
  13. Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89CrossRefGoogle Scholar
  14. Guilherme MR, Reis AV, Paulino AT, Moia TA, Mattoso LHC, Tambourgi EB (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117:3146–3154Google Scholar
  15. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  16. Harini M, Deshpande AP (2009) Rheology of poly(sodium acrylate) hydrogels during cross-linking with and without cellulose microfibrils. J Rheol 53:31–47CrossRefGoogle Scholar
  17. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  18. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  19. Larsson M, Stading M, Larsson A (2010) High performance polysodium acrylate superabsorbents utilizing microfibrillated cellulose to augment gel properties. Soft Mater 8:207–225CrossRefGoogle Scholar
  20. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  21. Ni B, Liu M, Lü S, Xie L, Zhang X, Wang Y (2010) Novel slow-release multi-element compound fertilizer with hydroscopicity and moisture preservation. Ind Eng Chem Res 49:4546–4552CrossRefGoogle Scholar
  22. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefGoogle Scholar
  23. Tanga Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, Knill CJ (2010) Production and characterization of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82:833–841CrossRefGoogle Scholar
  24. Tyagi P, Kumar A, Kumar Y, Lahiri SS (2011) Synthesis and characterization of poly(HEMA-MAA) hydrogel carrier for oral delivery of insulin. J Appl Polym Sci 122:2004–2012CrossRefGoogle Scholar
  25. Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928CrossRefGoogle Scholar
  26. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rajalaxmi Dash
    • 1
  • Carolina A. Cateto
    • 2
  • Arthur J. Ragauskas
    • 3
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Paper Science and TechnologyGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Institute of Paper Science and Technology, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations