Skip to main content

Isolation and characterization of cellulose nanofibers from banana peels

Abstract

Cellulose nanofibers were isolated from banana peel using a combination of chemical treatments, such as alkaline treatment, bleaching, and acid hydrolysis. The suspensions of chemically treated fibers were then passed through a high-pressure homogenizer 3, 5, and 7 times, to investigate the effect of the number of passages on the properties of the resulting cellulose nanofibers. The cellulose nanofibers isolated in this study had a dry basis yield of 5.1 %. Transmission electron microscopy showed that all treatments effectively isolated banana fibers in the nanometer scale. The micrographs of the process steps used to isolate the nanofibers revealed gradual removal of amorphous components. Increasing number of passages in the homogenizer shortened the cellulose nanofibers while furnishing more stable aqueous suspensions with zeta potential values ranging from −16.1 to −44.1 mV. All the samples presented aspect ratio in the range of long nanofibers, hence being potentially applicable as reinforcing agents in composites. X-ray diffraction studies revealed that homogenized nanofiber suspensions were more crystalline than non-homogenized suspensions. Fourier transform infrared spectroscopy confirmed that alkaline treatment and bleaching removed most of the hemicellulose and lignin components present in the banana fibers. Thermal analyses revealed that the developed nanofibers exhibit enhanced thermal properties. In general, the nanoparticles isolated from the banana peel have potential application as reinforcing elements in a variety of polymer composite systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023

    CAS  Article  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    CAS  Article  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    CAS  Article  Google Scholar 

  • Andrade-Mahecha MM (2011) Microcomposites, nanocomposites and edible coatings based on biodegradable materials from Canna indica L. PhD thesis, University of Campinas

  • Ball R, McIntosh AC, Brindley J (2004) Feedback processes in cellulose thermal decomposition: implications for fire-retarding strategies and treatments. Combust Theory Model 8(2):281–291

    CAS  Article  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24(12):1259–1268

    CAS  Article  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    CAS  Article  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630

    CAS  Article  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    CAS  Article  Google Scholar 

  • Bouaouina H, Desrumaux A, Loisel C, Legrand J (2006) Functional properties of whey proteins as affected by dynamic high-pressure treatment. Int Dairy J 16(4):275–284

    CAS  Article  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442

    CAS  Article  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627

    CAS  Article  Google Scholar 

  • Cherian BM, Leão AL, Souza SF, Costa LMM, Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibres for medical applications. Carbohydr Polym 86(4):1790–1798

    CAS  Article  Google Scholar 

  • De Moura MR, Avena-Bustillos RJ, McHugh TH, Wood DF, Otoni CG, Mattoso LHC (2011) Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films. J Food Eng 104(1):154–160

    Article  Google Scholar 

  • De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    CAS  Article  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    CAS  Article  Google Scholar 

  • Duchesne I, Hult EL, Molin U, Daniel G, Iversen T, Lennholm H (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibers as revealed by FE-SEM and CP/MAS 13C-NMR. Cellulose 8(2):103–111

    CAS  Article  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696

    CAS  Article  Google Scholar 

  • Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194

    CAS  Article  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092

    CAS  Article  Google Scholar 

  • Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80(3):852–859

    CAS  Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladiumbacterial cellulose membranes for fuel cells. Biosens Bioelectron 18(7):917–923

    CAS  Article  Google Scholar 

  • Fahmy TYA, Mobarak F (2008) Nanocomposites from natural cellulose fibers filled with kaolin in presence of sucrose. Carbohydr Polym 72(4):751–755

    CAS  Article  Google Scholar 

  • Kang HJ, Min SC (2010) Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT Food Sci Technol 43(6):903–909

    CAS  Article  Google Scholar 

  • Kaushik A, Singh M (2011) Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr Res 346(1):76–85

    CAS  Article  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345

    CAS  Article  Google Scholar 

  • Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hesler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides II. Springer, Heidelberg, pp 49–96

    Chapter  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6(6):3160–3165

    CAS  Article  Google Scholar 

  • Lee K-Y, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733

    CAS  Article  Google Scholar 

  • Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14(5):419–425

    CAS  Article  Google Scholar 

  • Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76(1):94–99

    CAS  Article  Google Scholar 

  • Pelissari FM, Andrade-Mahecha MM, Sobral PJA, Menegalli FC (2012) Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch 64(5):382–391

    CAS  Article  Google Scholar 

  • Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10(4):9–16

    CAS  Google Scholar 

  • Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498

    CAS  Article  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92

    CAS  Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    CAS  Article  Google Scholar 

  • Sejersen MT, Salomonsen T, Ipsen R, Clark R, Rolin C, Engelsen SB (2007) Zeta potential of pectin-stabilised casein aggregates in acidified milk drinks. Int Dairy J 17(4):302–307

    Article  Google Scholar 

  • Shah J, Malcolm Brown R (2004) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    CAS  Article  Google Scholar 

  • Soltes EJ, Elder TJ (1981) Pyrolysis. In: Goldstein IS (ed) Organic chemicals from biomass. CRC Press, Florida, pp 63–100

    Google Scholar 

  • Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stabil 84(2):331–339

    CAS  Article  Google Scholar 

  • Sun JX, Xu F, Sun XF, Xiao B, Sun RC (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88(3):521–531

    CAS  Article  Google Scholar 

  • Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431

    CAS  Article  Google Scholar 

  • Teixeira EM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66

    Article  Google Scholar 

  • Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC (2003) High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J 13(6):427–439

    CAS  Article  Google Scholar 

  • Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89–103

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    CAS  Article  Google Scholar 

  • Zuluaga R, Putaux J-L, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592

    CAS  Article  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would also like to acknowledge Margarita María Andrade-Mahecha for her contribution and guidance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franciele Maria Pelissari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pelissari, F.M., Sobral, P.J.d. & Menegalli, F.C. Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21, 417–432 (2014). https://doi.org/10.1007/s10570-013-0138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0138-6

Keywords

  • Banana peel
  • Cellulose nanofibers
  • High-pressure homogenizer
  • Morphology
  • Crystallinity studies