Skip to main content

Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols

Abstract

Deposition of nanoparticles on the surface of a variety of materials is a subject of great interest due to their potential applications in electronic devices, sensing, catalysis and bio-medical sciences. In this context, we have explored and compared various methodologies to generate gold and silver nanoparticles on the surface of cellulose fibers. It was found that boiling of the cellulose fibers in alkaline solution of gold and silver salts led to the formation and immobilization of gold and silver nanoparticles. However, in case of lecithin treated and thiol-modified cellulose fibers, high temperature was not essentially required for the formation and deposition of nanoparticles on cellulose substrate. In both these cases, fairly uniform metal nanoparticles were obtained in good yields (~43 wt% gold loading in case of thiol modified cellulose fibers) at room temperature. Borohydride-reduction method resulted in relatively lower loading (~22 wt%) with a wide size distribution of gold and silver nanoparticles on cellulose fibers. All these nanoparticle–cellulose composites were thoroughly characterized using scanning electron microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, UV–visible spectroscopy, and elemental analyzer. Thiol modified cellulose–gold nanoparticle composites served as active catalysts in the reduction of 4-nitrophenol into 4-aminophenol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382(8):1751–1770

    CAS  Article  Google Scholar 

  • Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28(4):515–518

    CAS  Article  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10(1):87–94

    Article  Google Scholar 

  • Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108(2–3):421–424

    CAS  Article  Google Scholar 

  • de Santa Maria LC, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63(9–10):797–799

    Article  Google Scholar 

  • Dong BH, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl Mater Interface 1(4):797–803

    CAS  Article  Google Scholar 

  • Drogat N, Granet R, Sol V, Memmi A, Saad N, Klein Koerkamp C, Bressollier P, Krausz P (2011) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13(4):1557–1562

    CAS  Article  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide–urea aqueous solutions. Cellulose 15(3):361–370

    CAS  Article  Google Scholar 

  • El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82

    CAS  Article  Google Scholar 

  • Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, ReiVilar M (2009) Hybrid systems of silver nanoparticles generated on cellulose surfaces. Langmuir 26(3):1996–2001

    Article  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406

    CAS  Article  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    CAS  Article  Google Scholar 

  • Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloids Surf B 39(1–2):31–37

    CAS  Article  Google Scholar 

  • Hussain I, Hussain SZ, Ihsan A, Rehman A, Khalid ZM, Brust M, Cooper AI (2010) In situ growth of gold nanoparticles on latent fingerprints—from forensic applications to inkjet printed nanoparticle patterns. Nanoscale 2(12):2575–2578

    CAS  Article  Google Scholar 

  • Iwata T, Kimura Y, Tsutsumi K, Furukawa Y, Kimura S (1993) The effect of various phospholipids on plasma lipoproteins and liver lipids in hypercholesterolemic rats. J Nutr Sci Vitaminol 39(1):63–71

    CAS  Article  Google Scholar 

  • Jimenez MA, Scarino ML, Vignolini F, Mengheri E (1990) Evidence that polyunsaturated lecithin induces a reduction in plasma cholesterol level and favorable changes in lipoprotein composition in hypercholesterolemic rats. J Nutr 120(7):659–667

    CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    CAS  Article  Google Scholar 

  • Kesting RE (1965) Semipermeable membranes of cellulose acetate for desalination in the process of reverse osmosis. I. Lyotropic swelling of secondary cellulose acetate. J Appl Polym Sci 9(2):663–688

    CAS  Article  Google Scholar 

  • Kotelnikova N, Panarin E, Shchukarev A, Serimaa R, Paakkari T, Jokela K, Shilov S, Kudina N, Wegener G, Windeisen E (1999) The effect of quaternary ammonium base adsorbates on the molecular and morphological structure of microcrystalline cellulose. Carbohydr Polym 38(3):239–246

    CAS  Article  Google Scholar 

  • Kwon JW, Yoon SH, Lee SS, Seo KW, Shim IW (2005) Preparation of silver nanoparticles in cellulose acetate polymer and the reaction chemistry of silver complexes in the polymer. Bull Korean Chem Soc 26(5):837–840

    CAS  Article  Google Scholar 

  • Lee HY, Park HK, Lee YM, Kim K, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Article  Google Scholar 

  • Liu S, Ke D, Zeng J, Zhou J, Peng T, Zhang L (2011a) Construction of inorganic nanoparticles by micro–nano-porous structure of cellulose matrix. Cellulose 18(4):945–956

    CAS  Article  Google Scholar 

  • Liu S, Zhou J, Zhang L (2011b) In situ synthesis of plate-like Fe2O3 nanoparticles in porous cellulose films with obvious magnetic anisotropy. Cellulose 18(3):663–673

    CAS  Article  Google Scholar 

  • Lu Q, Gao F, Komarneni S (2006) Cellulose-directed growth of selenium nanobelts in solution. Chem Mater 18(1):159–163

    CAS  Article  Google Scholar 

  • Luong ND, Lee Y, Nam JD (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44(10):3116–3121

    CAS  Article  Google Scholar 

  • Mahmoud KA, Male KB, Hrapovic S, Luong JHT (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interface 1(7):1383–1386

    CAS  Article  Google Scholar 

  • Rotello VM (2004) Nanoparticles: building blocks for nanotechnology. Springer, New York

    Book  Google Scholar 

  • Sarrazin P, Beneventi D, Chaussy D, Vurth L, Stephan O (2009) Adsorption of cationic photoluminescent nanoparticles on softwood cellulose fibres: effects of particles stabilization and fibres’ beating. Colloids Surf A 334(1–3):80–86

    CAS  Article  Google Scholar 

  • Sergeev GB (2006) Nanochemistry. Elsevier Science, Amsterdam

    Google Scholar 

  • Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358

    CAS  Article  Google Scholar 

  • Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical and sensor applications. ChemPhysChem 1(1):18–52

    CAS  Article  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    CAS  Article  Google Scholar 

  • Tankhiwale R, Bajpai S (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69(2):164–168

    CAS  Article  Google Scholar 

  • Taylor P, Omotoso O, Wiskel J, Mitlin D, Burrell R (2005a) Impact of heat on nanocrystalline silver dressings. Part II: physical properties. Biomaterials 26(35):7230–7240

    CAS  Article  Google Scholar 

  • Taylor P, Ussher A, Burrell R (2005b) Impact of heat on nanocrystalline silver dressings. Part I: chemical and biological properties. Biomaterials 26(35):7221–7229

    CAS  Article  Google Scholar 

  • Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y (2005) Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 59(24–25):3046–3049

    CAS  Article  Google Scholar 

  • Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir 24(18):10494–10497

    CAS  Article  Google Scholar 

  • Wu J, Zhao N, Zhang X, Xu J (2012) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19(4):1239–1249

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Higher Education Commission (HEC), Government of Pakistan, for financial support to Dr. Sumaira Ashraf for her PhD studies. We are also thankful to ex-National Commission on Nanoscience and Technology (NCNST) and the Ministry of Science and Technology (MoST), Government of Pakistan, for financial support to initiate nano-biotechnology research at NIBGE. IH thanks LUMS School of Science and Engineering (SSE), Lahore, Pakistan for providing start-up funds and supporting his research team. A part of this work was supported by DAAD project (ID 54372132) awarded to IH and Wolfgang J. Parak at Philipps University, Marburg, Germany. We are also thankful to Professor Wolfgang Parak for his support in characterizing the nanoparticle samples and intellectual discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad Hussain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 746 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ashraf, S., Saif-ur-Rehman, Sher, F. et al. Synthesis of cellulose–metal nanoparticle composites: development and comparison of different protocols. Cellulose 21, 395–405 (2014). https://doi.org/10.1007/s10570-013-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0129-7

Keywords

  • Cellulose
  • Thiol-modified cellulose
  • Lecithin
  • Cellulose–metal nanoparticle composites
  • Catalysis