Skip to main content
Log in

Thermal behavior and the compensation effect of vegetal fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The thermal degradation behavior and the Arrhenius parameter of curaua, kenaf, and jute vegetal fibers were studied using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and thermogravimetry analysis. XRD showed that the crystallite sizes in the (200) plane were in the order: curaua < jute < kenaf, and similar results were obtained for basal spacing. FTIR spectroscopy corroborated the XRD results. The thermal behavior of the fibers was analyzed by identifying the cellulose and hemicellulose content using independent parallel first-order models. The results were not very consistent with the kinetic degradation models of Kissinger, Friedman, and Flynn–Wall–Ozawa (taking into account the standard errors), which were used to determine the apparent activation energy of the fibers. In addition, the frequency factor (pre-exponential parameter) was observed to be independent of the heating rate. The fibers exhibited a compensation effect; i.e., higher apparent activation energies led to higher frequency factors. Finally, the solid-state degradation mechanism of all fibers was found to comprise diffusion and random nucleation followed by instantaneous growth of nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida Júnior JHS, Ornaghi Júnior HL, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117

    Article  Google Scholar 

  • Aquino EMF, Sarmento LPS, Oliveira W, Silva RV (2007) Moisture effect on degradation of jute/glass hybrid composites. J Reinf Plast Compos 26:219–233

    Article  CAS  Google Scholar 

  • Argawal UP, Reiner RS, Ralph AS (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733. doi:10.1007/s10570-010-9420-z

    Article  Google Scholar 

  • Badía JD, Santonja-Blasco L, Moriana R, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polyactide: II. On the thermal stability and thermal decomposition kinetics. Polym Degrad Stabil 95:2192–2199

    Article  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Clemons CM, Caulfield DF (2010) Natural fibers. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley, Weinheim, pp 213–222

    Google Scholar 

  • Dai D, Fan M (2011) Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vib Spectrosc 55:300–306

    Article  CAS  Google Scholar 

  • Driemeier C, Clligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44(1):184–192. doi:10.1107/S0021889810043955

    Article  CAS  Google Scholar 

  • Ebrahimi-Kahrizangi R, Abbasi MH (2008) Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferr Metal Soc 18:217–221

    Article  Google Scholar 

  • French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. doi:10.1007/s10570-013-0030-4

    Google Scholar 

  • French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Google Scholar 

  • Galwey AK (1994) Magnitudes of Arrhenius parameters for decomposition reactions of solids. Thermochim Acta 242:259–264

    Article  CAS  Google Scholar 

  • Galwey AK (1997) Compensation behaviour recognized in literature reports of selected heterogeneous catalytic reactions: aspects of the comparative analyses and significance of published kinetic data. Thermochim Acta 294:205–219

    Article  CAS  Google Scholar 

  • Galwey AK (2004) Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim Acta 413:139–183

    Article  CAS  Google Scholar 

  • Grønli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208

    Article  Google Scholar 

  • Kim U, Eom SK, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stabil 95:778–781

    Article  CAS  Google Scholar 

  • L’vov BV (2001) The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta 373:97–124

    Article  Google Scholar 

  • Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 8:349–358

    Article  Google Scholar 

  • Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stabil 96:679–685

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technol 109:148–153

    Article  CAS  Google Scholar 

  • Romanzini D, Ornaghi HL Jr, Amico SC, Zattera AJ (2012) Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites. Mater Res 15:415–420

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–7876

    Article  Google Scholar 

  • Satyanarayana KG, Flores-Sahagun THS, Dos Santos LP, Dos Santos J, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Compos A 45:153–161

    Article  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli MA (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77:47–53

    Article  Google Scholar 

  • Teng H, Wei YC (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811

    Article  CAS  Google Scholar 

  • Teng H, Lin HC, Ho JA (1997) Thermogravimetric analysis on global mass loss kinetics of rice hull pyrolysis. Ind Eng Chem Res 36:3974–3977

    Article  CAS  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq, CAPES, and FAPERGS. In addition, the authors would like to thank São Carlos Technology for donating the kenaf and jute fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor Luiz Ornaghi Júnior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ornaghi Júnior, H.L., Zattera, A.J. & Amico, S.C. Thermal behavior and the compensation effect of vegetal fibers. Cellulose 21, 189–201 (2014). https://doi.org/10.1007/s10570-013-0126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0126-x

Keywords

Navigation