Cellulose

, Volume 21, Issue 1, pp 291–299 | Cite as

Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films

Original Paper

Abstract

Self-standing composite films consisting of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibril (TOCN) and anionic poly(acrylamide) (PAM) in various weight ratios were prepared by casting and drying of homogeneous mixtures of aqueous TOCN dispersion and PAM solution. PAM/TOCN composite films consisting of 25 % PAM and 75 % TOCN had clearly higher Young’s modulus (13.9 GPa) and tensile strength (266 MPa) than 100 % TOCN film (10.8 GPa and 223 MPa, respectively) or 100 % PAM film (4.9 GPa and 78 MPa, respectively), showing that PAM molecules have mechanical reinforcement ability in TOCN matrix. Some attractive interactions are likely formed between TOCN element surfaces and PAM molecules. In contrast, no such mechanical improvements were observed for poly(vinyl alcohol)/TOCN or oxidized starch/TOCN composite films prepared as references. Moreover, the mechanical properties of the PAM/TOCN composite films were further improved by controlling molecular mass and branching degree of the PAM. The high optical transparency and low coefficient of thermal expansion of the 100 % TOCN film were mostly maintained in the TOCN composite film containing 25 % PAM.

Keywords

TEMPO-oxidized cellulose nanofibril Poly(acrylamide) Composite film Mechanical properties Mechanical reinforcement 

References

  1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRefGoogle Scholar
  2. Baraki H (2013) Structure-control of amphoteric polyacrylamide and its performance as dry strength resin. Jpn Tappi J 67(5):544–549Google Scholar
  3. Bulota M, Hughes M (2012) Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. J Mater Sci 47:5517–5523CrossRefGoogle Scholar
  4. Bulota M, Tanpichai S, Hughes M, Eichhorn SJ (2012) Micromechanics of TEMPO-oxidized fibrillated cellulose composites. ACS Appl Mater Interfaces 4:331–337CrossRefGoogle Scholar
  5. De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRefGoogle Scholar
  6. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Rennecker S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2009) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  7. Endo R, Saito T, Isogai A (2013) TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers. Polymer 54:935–941CrossRefGoogle Scholar
  8. Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546CrossRefGoogle Scholar
  9. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165CrossRefGoogle Scholar
  10. Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14:1705–1709CrossRefGoogle Scholar
  11. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  12. Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672CrossRefGoogle Scholar
  13. Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents—a review. Bioresources 1:281–318Google Scholar
  14. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci. doi:10.1007/s10086-013-1365-z
  15. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  16. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRefGoogle Scholar
  17. Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocompoiste: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRefGoogle Scholar
  18. Johnson RK, Zink-Sharp A, Glasser WG (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18:1599–1609CrossRefGoogle Scholar
  19. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  20. Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68Google Scholar
  21. Lin KM, Chen YY (2009) Improvement of electrical properties of sol–gel derived ZnO: Ga films by infrared heating method. J Sol Gel Sci Technol 51:215–221CrossRefGoogle Scholar
  22. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641CrossRefGoogle Scholar
  23. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  24. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700CrossRefGoogle Scholar
  25. Qi ZD, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558CrossRefGoogle Scholar
  26. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989CrossRefGoogle Scholar
  27. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  28. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  29. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRefGoogle Scholar
  30. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  31. Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRefGoogle Scholar
  32. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13:842–849CrossRefGoogle Scholar
  33. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765Google Scholar
  34. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocompoiste materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  35. Takahashi M, Iyoda K, Miyauchi T, Ohkido S, Tahashi M, Wakita K, Kajitani N, Kurachi M, Hotta K (2009) Preparation and characterization of Eu: Ti codoped LiNbO3 films prepared by the sol–gel method. J Appl Phys 106:044102CrossRefGoogle Scholar
  36. Wang Y, Hubbe MA, Sezaki T, Wang X, Rojas OL, Argyropoulos DS (2006) The role of polyampholyte charge density on its interactions with cellulose. Nord Pulp Paper Res J 21:638–645CrossRefGoogle Scholar
  37. Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRefGoogle Scholar
  38. Yoshimoto Y, Iwasa Y, Fujiwara T (2004) Study on the mechanism of PAMs as paper dry strength agents. Proceeding of the 71st Pulp and Paper Research Conference, pp 123–125Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.R&D CompanyHarima Chemicals Inc.KakogawaJapan

Personalised recommendations