Skip to main content

Advertisement

Log in

Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Xyloglucan and pectin are major non-cellulosic components of most primary plant cell walls. It is believed that xyloglucan and perhaps pectin are functioning as tethers between cellulose microfibrils in the cell walls. In order to understand the role of xyloglucan and pectin in cell wall mechanical properties, model cell wall composites created using Gluconacetobacter xylinus cellulose or cellulose nanowhiskers (CNWs) derived there from with different amounts of xyloglucan and/or pectin have been prepared and measured under extension conditions. Compared with pure CNW films, CNW composites with lower amounts of xyloglucan or pectin did not show significant differences in mechanical behavior. Only when the additives were as high as 60 %, the films exhibited a slightly lower Young’s modulus. However, when cultured with xyloglucan or pectin, the bacterial cellulose (BC) composites produced by G. xylinus showed much lower modulus compared with that of the pure BC films. Xyloglucan was able to further reduce the modulus and extensibility of the film compared to that of pectin. It is proposed that surface coating or tethering of xyloglucan or pectin of cellulose microfibrils does not alone affect the mechanical properties of cell wall materials. The implication from this work is that xyloglucan or pectin alters the mechanical properties of cellulose networks during rather than after the cellulose biosynthesis process, which impacts the nature of the connection between these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Plant cell walls. Garland Science, Taylor & Francis Group, New York

    Google Scholar 

  • Blaker JJ, Lee K-Y, Li X, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326

    Article  CAS  Google Scholar 

  • Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704

    Article  CAS  Google Scholar 

  • Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40(2):137–143

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3(1):1–30

    Article  CAS  Google Scholar 

  • Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20(1):25–35

    Article  CAS  Google Scholar 

  • Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38(1):27–37

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1989) Characterization of long-term extension of isolated cell-walls from growing cucumber hypocotyls. Planta 177(1):121–130

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125(1):131–134

    Article  CAS  Google Scholar 

  • Cybulska J, Vanstreels E, Ho QT, Courtin CM, Van Craeyveld V, Nicolai B, Zdunek A, Konstankiewicz K (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96(2):287–294

    Article  CAS  Google Scholar 

  • Dammstrom S, Salmen L, Gatenholm P (2005) The effect of moisture on the dynamical mechanical properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46(23):10364–10371

    Article  Google Scholar 

  • de Souza CF, Lucyszyn N, Woehl MA, Riegel-Vidotti IC, Borsali R, Sierakowski MR (2013) Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydr Polym 93(1):144–153

    Article  Google Scholar 

  • Dick-Perez M, Zhang YA, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50(6):989–1000

    Article  CAS  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40(210):1–11

    Article  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282(Pt 3):821–828

    CAS  Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84(2):327–339

    Article  Google Scholar 

  • Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88(2):547–557

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM (2013) The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose 20:1613–1627

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92(2):1809–1816

    Article  CAS  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037

    Article  CAS  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary-cell wall. Ann Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Hayashi T, Kaida R (2011) Functions of xyloglucan in plant cells. Mol Plant 4(1):17–24

    Article  CAS  Google Scholar 

  • Hayashi T, Marsden MPF, Delmer DP (1987) Pea xyloglucan and cellulose. 5. Xyloglucan–cellulose interactions invitro and invivo. Plant Physiol 83(2):384–389

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734

    Article  CAS  Google Scholar 

  • Iwata T, Indrarti L, Azuma JI (1998) Affinity of hemicellulose for cellulose produced by Acetobacter xylinum. Cellulose 5(3):215–228

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    Article  CAS  Google Scholar 

  • Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  • Mccann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant-cell wall. J Cell Sci 96:323–334

    Google Scholar 

  • Nishitani K, Vissenberg K (2007) Roles of the XTH protein family in the expanding cell. In: Verbelen J-P, Vissenberg K (eds) The expanding cell, vol 6. Plant cell monographs. Springer, Berlin, pp 89–116

    Google Scholar 

  • Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158(4):1933–1943

    Article  CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20(6):629–639

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Stiernstedt J, Brumer H, Zhou Q, Teeri TT, Rutland MW (2006a) Friction between cellulose surfaces and effect of xyloglucan adsorption. Biomacromolecules 7(7):2147–2153

    Article  CAS  Google Scholar 

  • Stiernstedt J, Nordgren N, Wagberg L, Brumer H, Gray DG, Rutland MW (2006b) Friction and forces between cellulose model surfaces: a comparison. J Colloid Interface Sci 303(1):117–123

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (eds) (2002) Cell walls: structure, biogenesis and expansion. In: Plant physiology. Sinauer Associates, Sunderland, pp 313–338

  • Talbott LD, Ray PM (1992) Molecular-size and separability features of pea cell-wall polysaccharides—implications for models of primary wall structure. Plant Physiol 98(1):357–368

    Article  CAS  Google Scholar 

  • Thompson DS (2005) How do cell walls regulate plant growth? J Exp Bot 56(419):2275–2285

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261

    Article  CAS  Google Scholar 

  • Tokoh C, Takabe K, Sugiyama J, Fujita M (2002) Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9(1):65–74

    Article  CAS  Google Scholar 

  • Wada M, Sugiyama J, Okano T (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J Appl Polym Sci 49(8):1491–1496

    Article  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In-vitro assembly of cellulose/xyloglucan networks—ultrastructural and molecular aspects. Plant J 8(4):491–504

    Article  CAS  Google Scholar 

  • Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 121(2):657–663

    Article  CAS  Google Scholar 

  • Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93(10):1402–1414

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242

    Article  CAS  Google Scholar 

  • Yi HJ, Puri VM (2012) Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol 160(3):1281–1292

    Article  CAS  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139(1):397–407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the US. Department of Energy, Office of Science under Award Number DE-SC0001090. SEM and XRD were supported by the Pennsylvania State University Materials Research Institute Nanofabrication Lab and the National Science Foundation Cooperative Agreement No. ECS-0335765. The authors thank Lin Fang from PSU for some sample preparations and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Catchmark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Catchmark, J.M. Roles of xyloglucan and pectin on the mechanical properties of bacterial cellulose composite films. Cellulose 21, 275–289 (2014). https://doi.org/10.1007/s10570-013-0115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0115-0

Keywords