Adsorption of four non-ionic cellulose derivatives on cellulose model surfaces

Abstract

The adsorption of four commercial non-ionic cellulose derivatives onto two different model surfaces of cellulose fibres has been studied with surface plasmon reflectance. The model surfaces of cellulose were ultrathin films of either nano fibrillated cellulose or regenerated cellulose on Au(s). Partial least squares models were used in the analysis of the data and it was found that the type of cellulose model surface seems to be most important for both the total adsorption and the initial adsorption rate of the studied cellulose derivatives. It is believed that this can be explained by morphological differences between the surfaces, and it was found that the properties of the cellulose derivatives that affect the adsorption of the two types of cellulose surface differ. For adsorption onto a NFC-based model surface, the type of cellulose derivative and the polydispersity index (PDI) of the cellulose derivative seem to be the two most important variables for the observed adsorption of these cellulose derivatives. For the regenerated cellulose surface the three most important variables are the M n of the cellulose derivatives, the DS NMR of the methyl celluloses, and PDI of the cellulose derivatives. Thus the adsorption of cellulose derivatives on the NFC-based cellulose model surface is strongly affected by the type of substituent, while the same cannot be said for a surface regenerated from N-methylmorpholine-N-oxide. Additionally, the DS NMR of methyl celluloses affects their adsorption differently on the investigated cellulose model surfaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9(4):1273–1282

    CAS  Article  Google Scholar 

  2. Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685. doi:10.1021/la900323n

    CAS  Article  Google Scholar 

  3. Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75. doi:10.1163/1568554053542188

    CAS  Article  Google Scholar 

  4. Bootten TJ, Harris PJ, Melton LD, Newman RH (2009) Solid-state 13C NMR study of a composite of tobacco xyloglucan and gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromolecules 10(11):2961–2967. doi:10.1021/bm900762m

    CAS  Article  Google Scholar 

  5. Christiernin M, Henriksson G, Lindström ME, Brumer H, Teeri TT, Lindström T, Laine J (2003) The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nord Pulp Paper Res J 18(2):182–187

    CAS  Article  Google Scholar 

  6. Eronen P, Junka K, Laine J, Österberg M (2011) Interaction between water-soluble polysaccharides and native nanofibrillar cellulose thin films. Bioresources 6(4):4200–4217

    CAS  Google Scholar 

  7. Fatehi P, Kititerakun R, Ni YH, Xiao HN (2010) Synergy of CMC and modified chitosan on strength properties of cellulosic fiber network. Carbohydr Polym 80(1):208–214

    CAS  Article  Google Scholar 

  8. Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13(3):736–742. doi:10.1021/bm201661k

    CAS  Article  Google Scholar 

  9. Fras-Zemljic L, Stenius P, Laine J, Stana-Kleinschek K (2006) The effect of adsorbed carboxymethyl cellulose on the cotton fibre adsorption capacity for surfactant. Cellulose 13(6):655–663

    CAS  Article  Google Scholar 

  10. Gunnars S, Wågberg L, Stuart MAC (2002) Model films of cellulose: I. Method development and initial results. Cellulose 9(3–4):239–249. doi:10.1023/a:1021196914398

    CAS  Article  Google Scholar 

  11. Hannuksela T, Tenkanen M, Holmbom B (2002) Sorption of dissolved galactoglucomannans and galactomannans to bleached Kraft pulp. Cellulose 9(3–4):251–261

    CAS  Article  Google Scholar 

  12. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26(9):1689–1762. doi:10.1016/s0079-6700(01)00022-3

    CAS  Article  Google Scholar 

  13. Junka K, Sundman O, Salmi J, Österberg M, Laine J (2011) Multilayers of cellulose derivatives and chitosan on cellulose model surfaces studied by QCM-D and CPM. In: Abstracts of papers of the American Chemical Society, vol 241. 241st National meeting and exposition of the American-Chemical-Society (ACS), Anaheim, CA, 27–31 March, 2011

  14. Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447. doi:10.1021/la302110a

    CAS  Article  Google Scholar 

  15. Laine J, Lindström T, Glad-Nordmark G, Risinger G (2000) Studies on topochemical modification of cellulosic fibres Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibres. Nord Pulp Paper Res J 15(5):520–526

    CAS  Article  Google Scholar 

  16. Laine J, Lindström T, Glad-Nordmark G, Risinger G (2002) Studies on topochemical modification of cellulosic fibres—Part 2. The effect of carboxymethyl cellulose attachment on fibre swelling and paper strength. Nord Pulp Paper Res J 17(1):50–56

    CAS  Article  Google Scholar 

  17. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81. doi:10.1016/j.molliq.2010.04.016

    CAS  Article  Google Scholar 

  18. Liu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27(14):8718–8728. doi:10.1021/la200628a

    CAS  Article  Google Scholar 

  19. Liu DT, Xia KF, Yang RD (2012) Synthetic pathways of regioselectively substituting cellulose derivatives: a review. Curr Org Chem 16(16):1838–1849

    CAS  Article  Google Scholar 

  20. Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587. doi:10.1007/s10570-011-9644-6

    CAS  Article  Google Scholar 

  21. Mohan T, Zarth CSP, Doliska A, Kargl R, Griesser T, Spirk S, Heinze T, Stana-Kleinschek K (2013) Interactions of a cationic cellulose derivative with an ultrathin cellulose support. Carbohydr Polym 92(2):1046–1053. doi:10.1016/j.carbpol.2012.10.026

    CAS  Article  Google Scholar 

  22. Nagel MCV, Koschella A, Voiges K, Mischnick P, Heinze T (2010) Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur Polym J 46(8):1726–1735. doi:10.1016/j.eurpolymj.2010.05.009

    CAS  Article  Google Scholar 

  23. Orelma H, Teerinen T, Johansson LS, Holappa S, Laine J (2012) CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules 13(4):1051–1058. doi:10.1021/bm201771m

    CAS  Article  Google Scholar 

  24. Paananen A, Österberg M, Rutland M, Tammelin T, Saarinen T, Tappura K, Stenius P (2004) Interaction between cellulose and xylan: an atomic force microscope and quartz crystal microbalance study. In: Hemicelluloses: science and technology, vol 864. ACS symposium series, pp 269–290

  25. Ramos LA, Frollini E, Koschella A, Heinze T (2005) Benzylation of cellulose in the solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate. Cellulose 12(6):607–619. doi:10.1007/s10570-005-9007-2

    CAS  Article  Google Scholar 

  26. Stuart MAC, Scheutjens JMHM, Fleer GJ (1980) Polydispersity effects and the interpretation of polymer adsorption isotherms. J Polym Sci Polym Phys Ed 18(3):559–573. doi:10.1002/pol.1980.180180315

    Article  Google Scholar 

  27. Sundman O, Laine J (2013) Layer by layer adsorption of two cellulose based polyelectrolytes on cellulose fibres. Dependence of pH and ionic strength on the resulting charge as measured by polyelectrolyte titration. Bioresources 4(8):4827–4836

    Google Scholar 

  28. Umetrics (2013) SIMCA 13.03, vol 13.0.3.0. Umeå, Sweden

  29. Zhang Q, Brumer H, Agren H, Tu YQ (2011) The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr Res 346(16):2595–2602. doi:10.1016/j.carres.2011.09.007

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Laura Taajamaa, Karoliina Junka and Janne Laine, Aalto University Finland, are acknowledged for supplying the NFC material. Christine Funk and Uwe Sauer, the department of chemistry, Umeå University, are acknowledged for use of equipment. Janice PL Kenney, the department of chemistry, Umeå University is acknowledged for grammatical corrections. I thank Bio4Energy, a strategic research environment appointed by the Swedish government, for supporting this work. Finally the Kempe foundation is acknowledged for financing laboratory equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ola Sundman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1648 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sundman, O. Adsorption of four non-ionic cellulose derivatives on cellulose model surfaces. Cellulose 21, 115–124 (2014). https://doi.org/10.1007/s10570-013-0105-2

Download citation

Keywords

  • Cellulose derivatives
  • Surface interactions
  • Adsorption
  • Surface modification